![文學(xué)工程流體力學(xué)_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/15/a446687c-1168-4d0c-b1c6-0fa9e8186e1f/a446687c-1168-4d0c-b1c6-0fa9e8186e1f1.gif)
![文學(xué)工程流體力學(xué)_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/15/a446687c-1168-4d0c-b1c6-0fa9e8186e1f/a446687c-1168-4d0c-b1c6-0fa9e8186e1f2.gif)
![文學(xué)工程流體力學(xué)_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/15/a446687c-1168-4d0c-b1c6-0fa9e8186e1f/a446687c-1168-4d0c-b1c6-0fa9e8186e1f3.gif)
![文學(xué)工程流體力學(xué)_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/15/a446687c-1168-4d0c-b1c6-0fa9e8186e1f/a446687c-1168-4d0c-b1c6-0fa9e8186e1f4.gif)
![文學(xué)工程流體力學(xué)_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/15/a446687c-1168-4d0c-b1c6-0fa9e8186e1f/a446687c-1168-4d0c-b1c6-0fa9e8186e1f5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第二章第二章流體靜力學(xué)流體靜力學(xué) 無論是靜止的流體還是相對靜止的流體,流體之間沒有相對運動,因而粘性作用表現(xiàn)不出來,故切應(yīng)力為零。本章學(xué)習要求本章學(xué)習要求: 掌握流體平衡的規(guī)律,靜止時流體的應(yīng)力特征,靜力學(xué)基本方程,流體與它的邊界之間的作用力,非慣性系中流體的相對平衡。 流體的靜壓強及特性 流體平衡微分方程 流體靜力學(xué)基本方程 壓強的單位及測量儀表 靜止液體作用在壁面上的總壓力 阿基米德原理及固體在液體中的沉浮問題 流體的相對平衡第二章 流體靜力學(xué)第一節(jié)第一節(jié)流體靜壓強及其特性流體靜壓強及其特性 一、流體靜壓強一、流體靜壓強APpA0limAP面積A的平均流體靜壓力流體靜壓力(流體靜壓強)靜止
2、流體單位面積上所受的作用力第一節(jié)第一節(jié)流體靜壓強及其特性流體靜壓強及其特性 二、靜止流體中任一點應(yīng)力的特性:二、靜止流體中任一點應(yīng)力的特性: 1. 靜止流體表面應(yīng)力只能是壓應(yīng)力或壓強,且靜壓強方向與作用面的內(nèi)法線方向重合。 2. 作用于靜止流體同一點壓強的大小各向相等,與作用面的方位無關(guān)。 px= py= pz= p即有: 靜止流體中,只存在法向壓應(yīng)力。 靜止流體,速度處處為零,沒有速度梯度,也就沒有切應(yīng)力。此外流體不能承受拉應(yīng)力。且具有易流動性。 流體靜壓力與靜止流體中點位置有關(guān): p= f(x,y,z)第一節(jié)第一節(jié)流體靜壓強及其特性流體靜壓強及其特性 第二節(jié)第二節(jié)流體平衡微分方程流體平衡微
3、分方程 一、流體平衡微分方程一、流體平衡微分方程歐拉平衡方程歐拉平衡方程 在平衡流體中取一微元六面體,邊長分別為dx,dy,dz,設(shè)中心點的壓強為p(x,y,z)=p,對其進行受力分析: dxdzdyyppdxdzdyypp)2()2(dxdydzYy向受力表面力質(zhì)量力第二節(jié)第二節(jié)流體平衡微分方程流體平衡微分方程 根據(jù)平衡條件,在y方向有 ,即 流體平衡微分方程(即歐拉平衡方程): ()()022p dyp dypdxdzpdxdzdxdydzyy10pYy0yF 101010pXxpYypZz第二節(jié)第二節(jié)流體平衡微分方程流體平衡微分方程 物理意義: 處于平衡狀態(tài)的流體,單位質(zhì)量流體所受的表面
4、力分量與 質(zhì)量力分量彼此相等。 壓強沿軸向的變化率( )等于軸向單位體積上的質(zhì)量力的分量(X,Y,Z)。 第二節(jié)第二節(jié)流體平衡微分方程流體平衡微分方程 二、流體平衡微分方程的積分二、流體平衡微分方程的積分 p = p (x, y, z)壓強全微分 式各項依次乘以dx, dy, dz后相加得: pppdpdxdydzxyz1()pppXdxYdyZdzdxdydzxyzdWZdzYdyXdxdp)(W勢函數(shù))(00WWpp101010pXxpYypZz第二節(jié)第二節(jié)流體平衡微分方程流體平衡微分方程 帕斯卡原理的應(yīng)用帕斯卡原理的應(yīng)用 第二節(jié)第二節(jié)流體平衡微分方程流體平衡微分方程 三、帕斯卡原理三、帕
5、斯卡原理 )(00WWpp質(zhì)量力(與p0無關(guān))表面力如果靜止液體邊界處的壓強p0變?yōu)閜0p0流體中任意點處的靜壓強變?yōu)?()()(000WWpppp0pp 處于平衡狀態(tài)下的不可壓縮流體中,任意點處的壓強變化值p0將等值地傳遞到流體其它質(zhì)點處。第二節(jié)第二節(jié)流體平衡微分方程流體平衡微分方程 四、等壓面四、等壓面 等壓面(equipressure surface):是指流體中壓強相等(p=const)的各點所組成的面。 只有重力作用下的等壓面應(yīng)滿足的條件: 1.靜止; 2.連通; 3.連通的介質(zhì)為同一均質(zhì)流體; 4.質(zhì)量力僅有重力; 5.同一水平面。 提問:圖中所示哪個斷面為等壓面? 0)(ZdzY
6、dyXdxdp0ZdzYdyXdx質(zhì)量力與等壓面正交第三節(jié)第三節(jié)流體靜力學(xué)的基本方程流體靜力學(xué)的基本方程一、重力作用下靜止液體的壓強分布規(guī)律一、重力作用下靜止液體的壓強分布規(guī)律 重力作用下靜止流體質(zhì)量力: 代入流體平衡微分方程 在自由液面上有: z=H 時, p=p0 代入上式有: ()dpXdxYdyZdz0,XYZg dpgdzpgzC 0CpgH第三節(jié)第三節(jié)流體靜力學(xué)的基本方程流體靜力學(xué)的基本方程1.液體靜力學(xué)基本方程: 或 當 p0 = 0 時結(jié)論: 1)僅在重力作用下,靜止流體中某一點的靜水壓強隨深度按線性規(guī)律增加。 2)僅在重力作用下,靜止流體中某一點的靜水壓強等于表面壓強加上流體
7、的容重與該點淹沒深度的乘積。 3)自由表面下深度h相等的各點壓強均相等只有重力作用下的同一連續(xù)連通的靜止流體的等壓面是水平面。 4)推廣:已知某點的壓強和兩點間的深度差,即可求另外一點的壓強值。 ghpzHgpp00)(ghphgpp12第三節(jié)第三節(jié)流體靜力學(xué)的基本方程流體靜力學(xué)的基本方程2.重力作用下靜水壓強的分布規(guī)律 由式(2-9),重力作用下的靜水力學(xué)基本方程又可寫為: 或 czgpgpzgpz2211第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第三節(jié)第三節(jié)流體靜力學(xué)的基本方程流體靜力學(xué)的基本方程
8、a.絕對壓強(absolute pressure):是以絕對真空狀態(tài)下的壓強(絕對零壓強)為基準計量的壓強,用 表示, 。 二、壓強的表示方法 (絕對壓強、相對壓強和真空度)0abspabspb. 相對壓強(relative pressure):又稱“表壓強”,是以當?shù)毓こ檀髿鈮?at) 為基準計量的壓強。用p表示, , p可“”可“ ”,也可為“0”。 aabspppc.真空(Vacuum):是指絕對壓強小于一個大氣壓的受壓狀態(tài),是負的相對 壓強。 真空值pv absaVppp)(aabspp第三節(jié)第三節(jié)流體靜力學(xué)的基本方程流體靜力學(xué)的基本方程1.幾何意義 三、流體靜力學(xué)基本方程的意義測壓管
9、高度位置水頭測壓管水頭靜壓高度位置水頭靜壓水頭第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第三節(jié)第三節(jié)流體靜力學(xué)的基本方程流體靜力學(xué)的基本方程第三節(jié)第三節(jié)流體靜力學(xué)的基本方程流體靜力學(xué)的基本方程物理意義: 1. 僅受重力作用處于靜止狀態(tài)的流體中,任意點對同一基準面的單位勢能為一常數(shù),即各點測壓管水頭相等,位頭增高,壓頭減小。 2. 在均質(zhì)(g=常數(shù))、連通的液體中,水平面(z1 = z2=常數(shù))必然是等壓面(p1 = p2 =常數(shù))。 表明:液體平衡時,單位重量液體重力勢能與壓力能之和為常數(shù),這里顯示了機械能守恒的意義。 位置水頭z :任一點在基準面0-0以上的位置高度
10、,表示單位重量流體從某一基準面算起所具有的位置勢能,簡稱位能。 測壓管高度 p/g:表示單位重量流體從壓強為大氣壓算起所具有的壓強勢能,簡稱壓能(壓強水頭)。 測壓管水頭( z+p/g):單位重量流體的總勢能。 第四節(jié)第四節(jié)壓強單位和測壓計壓強單位和測壓計a. 應(yīng)力單位: 這是從壓強定義出發(fā),以單位面積上的作用力來表示的,N/m2Pa,MPa 106Pa, kN/ m2 kPa,bar 105Pa 0.1MPa 10N/ cm2b. 大氣壓 標準大氣壓:1標準大氣壓(atm)=1.013X105Pa=101.3 kPa c. 液柱高 水柱高mH20:1atm相當于 OmHgpha233.109
11、8001013001at相當于 OmHgpha210980098000汞柱高mmHg:1 atm相當于 mmHgh7608 . 9106 .1310130031at相當于 mmHgh7368 . 9106 .13980003一一.壓強的計量單位壓強的計量單位kgf/ cm2 0.981bar第四節(jié)第四節(jié)壓強單位和測壓計壓強單位和測壓計二二.測壓計測壓計1) 測壓管 測壓管(pizometric tube): 是以液柱高度為表征測量點壓強的連通管。一端與被測點容器壁的孔口相連,另一端直接 和大氣相通的直管。 適用范圍:測壓管適用于測量較小的壓強,但不適合測真空。 1 液體壓力計hpAg如何用測壓
12、管測真空度?第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第四節(jié)第四節(jié)壓強單位和測壓計壓強單位和測壓計2) 微壓計 被測點A的壓強很小,為了提高測量精度,增大測壓管標尺讀數(shù),常采用以下兩種方法: (1)將測壓管傾斜放置,此時標尺讀數(shù)為l,而壓強水頭為垂直高度h,則 singlghpA(2)在測壓管內(nèi)放置輕質(zhì)而又和水互不混摻的液體,重度 ,則有較大的h。 )()(gg第四節(jié)第四節(jié)壓強單位和測壓計壓強單位和測壓計2 水銀測壓計與U形測壓計 適用范圍:用于測定管道或容器中某點流體壓強,通常被測點壓強較大。 BB等壓面: 11022Apgzpgz2211Apgzgz第四節(jié)第四節(jié)壓
13、強單位和測壓計壓強單位和測壓計三、壓差計三、壓差計 壓差計 空氣壓差計:用于測中、低壓差 油壓差計:用于測很小的壓差 水銀壓差計:用于測高壓差 適用范圍:測定液體中兩點的壓強差或測壓管水頭差。 壓差計計算 若A、 B中流體均為水,2為水銀, 則 132211ABppgzgzgz32100222()()()()HgABWWWgppzzzzzzzggg2()()()(1)12.6()()()HgABABWWWgppzzhhggg 2zh 第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第四節(jié)第四節(jié)壓強單位和測壓計壓強單位和測壓計四、金屬測壓計(壓力表)四、金屬測壓計(壓力表)
14、適用范圍:用于測定較大壓強。是自來水廠及管路系統(tǒng)最常用的 測壓儀表。 五、真空計(真空表)五、真空計(真空表) 適用范圍:用于測量真空。 第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力一、一、平面上的流體靜壓力平面上的流體靜壓力 第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力(一)解
15、析法(一)解析法 MN為任意形狀的平面,傾斜放置于水中,與水面成角,面積為A,其形心C的坐標為xc,yc,形心C在水面下的深度為hc。 1. 作用力的大小,微小面積dA的作用力: dAgyghdApdAdFsin靜矩: 結(jié)論:潛沒于液體中的任意形狀平面的靜水總壓力F,大小等于受壓面面積A與其形心點的靜水壓強pc之積。 AydAycAApAghAygyFdFcccsin第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力2. 總壓力作用點(壓心) 合力矩定理(對Ox軸求矩): 面積慣性矩: 式中:Io面積A 繞Ox 軸的慣性矩。 AygFcsindAygdFyyFAp2sinAy
16、IIdAyccA202AyIyAyIFIgyccccp00sin220ccAAyIdAyIIc面積A 繞其與Ox 軸平行的形心軸的慣性矩。 結(jié)論:1)當平面面積與形心深度不變時,平面上的總壓力大小與平面傾角無關(guān); 2)壓心的位置與受壓面傾角無關(guān),并且壓心總是在形心之下.只有當受壓面位置為水平放置時,壓心與形心才重合。 第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力(二)圖解法(二)圖解法 適用范圍:規(guī)則平面上的靜水總壓力及其作用點的求解。 原理:靜水總壓力大小等于壓強分布圖的體積,其作用線通過壓強分布圖的形心,該作用線與受壓面的交點便是壓心P。 例題:用圖解法計算解析法中
17、例例題:用圖解法計算解析法中例1的總壓力大小與壓心位置。的總壓力大小與壓心位置。 第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力解:作出矩形閘門上的壓強分布圖:底為受壓面面積,高度是各點的壓強。 總壓力為壓強分布圖的體積: 作用線通過壓強分布圖的重心: kN8 .58)(212211bhhhgghFm17. 2)()(2321121121hhgghhhgghhhyp第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力二、曲面上的流體靜壓力二、曲面上的流體靜壓力第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力二、曲面上的流體靜壓力二、曲面
18、上的流體靜壓力1)水平分力Fx 結(jié)論:作用于曲面上的靜水總壓力F的水平分力Fx等于作用于該曲面的垂直投影面(矩形平面)上的靜水總壓力,方向水平指向受力面,作用線通過面積Az的壓強分布圖體積的重心。 zczAXXAghhdAgFdFz第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力PcABABAXXAzVghgVhdAghdAgFXX2)垂直分力Fz 式中:Vp 壓力體體積 結(jié)論:作用于曲面上的靜水總壓力F的鉛垂分力Fz等于該曲面上的壓力體所包含的液體重,其作用線通過壓力體的重心,方向鉛垂指向受力面。 第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力3)總
19、壓力 作用在曲面上的靜水總壓力 與水平面的夾角: 作用線:必通過Fx ,F(xiàn)z的交點,但這個交點不一定位于曲面上。對于圓弧面,F(xiàn)作用線必通過圓心。 F的作用點作用在F作用線與曲面的交點。 22ZXFFF)(tan1XZFF第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力曲面上的靜水總壓力的計算步驟 第五節(jié)第五節(jié)靜止液體作用在壁面上的總壓力靜止液體作用在壁面上的總壓力曲面上的靜水總壓力的計算步驟 1. 計算水平分力 正確繪制曲面的鉛垂投影圖,求出該投影圖的面積及形心深度,然后求出水平分力; 2. 計算鉛垂分力 正確繪制曲面的壓力體。壓力體體積由以下幾種面圍成:受壓曲面本身、通過
20、曲面周圍邊緣作的鉛垂面、液面或液面的延長線。鉛垂分力的大小即為壓力體的重量; 3. 總壓力的合成 總壓力的大小利用水平分力及鉛垂分力通過求合力的方法求得。 第六節(jié)第六節(jié)阿基米德定律及浮潛體穩(wěn)定問題阿基米德定律及浮潛體穩(wěn)定問題一、阿基米德定律、浮力、浸沒物體的三態(tài)一、阿基米德定律、浮力、浸沒物體的三態(tài) 1阿基米德定律阿基米德定律 物體在靜止流體中所受到的靜水總壓力,僅有鉛垂向上的分力,其大小恰等于物體(潛體、浮體)所排開的液體重量。 潛體所排開液體的重量(方向朝上) 第六節(jié)第六節(jié)阿基米德定律及浮潛體穩(wěn)定問題阿基米德定律及浮潛體穩(wěn)定問題 浮力 浮力:即在阿基米德定律中,物體所受到的具有把物體推向液
21、體表面傾向的力的合力,即為浮力。浮力方向總是鉛垂向上。 浮心:即浮力的作用點,該浮心與所排開液體體積的形心重合。 浸沒物體的三態(tài) 浸沒于液體中的物體不受其他物體支持時,受到重力G和浮力FZ作用,所以物體有下列三態(tài): (1)沉體:當GFZ,下沉到底的物體。 (2)潛體:當G=FZ,潛沒于液體中任意位置而保持平衡 即懸浮的物體。 (3)浮體:當Ge,即重心C在定傾中心M之下。 不穩(wěn)定平衡: 即re,即重心C在定傾中心M之上。 隨遇平衡: 即r=e,即重心C與定傾中心M重合。 第六節(jié)第六節(jié)阿基米德定律及浮潛體穩(wěn)定問題阿基米德定律及浮潛體穩(wěn)定問題 定傾半徑r的計算 對于小傾角( 15)的浮體: R =
22、 I0 / V 式中: I0浮體浮面對其中心縱軸O-O的慣性矩; V浮體排開液體的體積。 第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡 若坐標系本身作變速運動,則此坐標系中的物體將承受附加慣性力。兩類典型的非慣性系: (1)直線等加速運動的坐標系。(2)等角速度旋轉(zhuǎn)的坐標系。 研究其間靜止流體的壓力分布規(guī)律。 等加速水平運動容器中的液體 一.直線等加速運動坐標系:基本關(guān)系式仍為 注意 f 應(yīng)包含單位質(zhì)量的慣性力在重力場中,若動坐標系加速度為a第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡 若坐標系本身作變速運動,則此坐標系中的物體將承受附加慣性力。兩類典型的非慣性系: (1)直線等加速運動的坐標系。(2
23、)等角速度旋轉(zhuǎn)的坐標系。 研究其間靜止流體的壓力分布規(guī)律。一.直線等加速運動坐標系:。 ZdzYdyXdxdp第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡.sin; 0cosagZYaX;cazgzagpzazgxagdpggsincos;dsinddcos, 00ppzyx得:。0pc 結(jié)論:壓力p不僅隨Z變化,還隨x變化。第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡0dsinddcoszazgxa 將單位質(zhì)量力在坐標軸上的分力代入等壓面微分方程: 得:0ZdzYdyXdx 對上式進行積分得:czagasincos 等壓面方程 等壓面不是水平面,而是一簇平行的平面。 等壓面與x軸方向斜角大小為:si
24、ncostan1aga第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡 若坐標系本身作變速運動,則此坐標系中的物體將承受附加慣性力。兩類典型的非慣性系: (1)直線等加速運動的坐標系。(2)等角速度旋轉(zhuǎn)的坐標系。 研究其間靜止流體的壓力分布規(guī)律。一.直線等加速運動坐標系:。 ZdzYdyXdxdp第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡 若坐標系本身作變速運動,則此坐標系中的物體將承受附加慣性力。兩類典型的非慣性系: (1)直線等加速運動的坐標系。(2)等角速度旋轉(zhuǎn)的坐標系。 研究其間靜止流體的壓力分布規(guī)律。一.直線等加速運動坐標系:。 ZdzYdyXdxdp第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡
25、若坐標系本身作變速運動,則此坐標系中的物體將承受附加慣性力。兩類典型的非慣性系: (1)直線等加速運動的坐標系。(2)等角速度旋轉(zhuǎn)的坐標系。 研究其間靜止流體的壓力分布規(guī)律。一.直線等加速運動坐標系:。 ZdzYdyXdxdp第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡與慣性系中結(jié)論相比,方程的形式相同,但重力加速度項有變化。(3)兩種液體相對平衡的分界面是斜平面。(證明從略)第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡二等角速度旋轉(zhuǎn)坐標系:是向心加速度, 柱坐標系中沿增加的方向的單位向量( 不變) 相鄰任意兩點的向徑:性質(zhì):(1)等壓面是旋轉(zhuǎn)拋物面。第七節(jié)第七
26、節(jié)液體的相對平衡液體的相對平衡(2)自由面是旋轉(zhuǎn)拋物面。將坐標原點放在自由面的轉(zhuǎn)軸上。由 及 得 自由面上 自由面方程得: 勻角速旋轉(zhuǎn)容器中液體的相對平衡 cgzrp)2/(22 azrpp00apc )2/(22gzrppaapp grzs222)(zzgppsa第七節(jié)第七節(jié)液體的相對平衡液體的相對平衡即為z點液體深度 與慣性系中結(jié)論相比,方程形式相同。(3)兩種液體相對平衡分界面是旋轉(zhuǎn)拋物面。(證明從略)ghppa判斷如圖所示的平面是否為等壓面vahpp 0gg0pphav1 2等壓面1-2上201021 hhpp時,p1p2Alh1hh2A0h20h10時 21pp sin 202101
27、lhhhhhsinsin102012lhlhhhhh2211 hphppBggBggsin 1221lhhhpphAlA.0ggsinsin 01221gllAAhhpp1 2Hpp 01gapp 2等壓面上有Hppa 0g真空值Hpppav 0g11 hppABg等壓面上有22 hppaCg1122 hphpAagg1122 hhppaAgg1122 hhpppaAvggFMCBAphppp2 g(1)1 hpppMaCFg21 hhppMMaAgg21 hhpppMMaAAgg(2)FMCBphpp2 gGFpp 2 hppWGDg21 )( hhppWMMaBgggCDEFG1 hppp
28、MaEDg2 hppWDGga1 hppWCg等壓面上有Cb2 hhppMODggCb2a1 hhphpMOWgggaCb21 hhhppWMOggg第二章習題2-5;2-7;2-9;2-13;2-16;2-17;2-20F1F1paPag HpaPag hyxzH01.流體平衡微分方程(即歐拉平衡方程): 101010pXypYypZz2.流體平衡微分方程的積分 dWZdzYdyXdxdp)()(00WWpp0ZdzYdyXdx等壓面3.重力場中液體靜力學(xué)基本方程: ghpzHgpp00)(grzs222)(zzgppsahgapzzgappzasza xgaazxxs4.液體相對平衡 勻加速直線運動等角速度旋轉(zhuǎn)運動(1)利用等壓面求壓強、壓強差和真空值;(2)求液體對固體壁面的作用力。第四節(jié)第四節(jié)壓強單位和測壓計壓強單位和測壓計a. 應(yīng)力單位: 這是從壓強定義出發(fā),以單位面積上的作用力來表示的,N/m2Pa,MPa 106Pa, kN/ m2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級數(shù)學(xué)口算題
- 青島版數(shù)學(xué)七年級上冊5.2《代數(shù)式》聽評課記錄
- 魯教版地理六年級下冊6.2《自然環(huán)境》聽課評課記錄3
- 蘇教版三年級下冊《兩位數(shù)乘整十數(shù)的口算》教案
- 委托經(jīng)營管理協(xié)議書范本
- 蘇州蘇教版三年級數(shù)學(xué)上冊《周長是多少》聽評課記錄
- 產(chǎn)品銷售合作協(xié)議書范本(代理商版本)
- 書稿專用版權(quán)合同范本
- 酒店房屋出租辦公經(jīng)營協(xié)議書范本
- 部編版道德與法治九年級下冊《1.2復(fù)雜多變的關(guān)系》聽課評課記錄
- 《工程電磁場》配套教學(xué)課件
- 遼寧省錦州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 改革開放的歷程(終稿)課件
- 職位管理手冊
- IPQC首檢巡檢操作培訓(xùn)
- 肉制品加工技術(shù)完整版ppt課件全套教程(最新)
- (中職)Dreamweaver-CC網(wǎng)頁設(shè)計與制作(3版)電子課件(完整版)
- 東南大學(xué) 固體物理課件
- 行政人事助理崗位月度KPI績效考核表
- 紀檢監(jiān)察機關(guān)派駐機構(gòu)工作規(guī)則全文詳解PPT
- BP-2C 微機母線保護裝置技術(shù)說明書 (3)
評論
0/150
提交評論