高中數(shù)學(xué) 第二單元 圓錐曲線與方程 2.1.2 橢圓的幾何性質(zhì)(二)課件 新人教B版選修1-1_第1頁
高中數(shù)學(xué) 第二單元 圓錐曲線與方程 2.1.2 橢圓的幾何性質(zhì)(二)課件 新人教B版選修1-1_第2頁
高中數(shù)學(xué) 第二單元 圓錐曲線與方程 2.1.2 橢圓的幾何性質(zhì)(二)課件 新人教B版選修1-1_第3頁
高中數(shù)學(xué) 第二單元 圓錐曲線與方程 2.1.2 橢圓的幾何性質(zhì)(二)課件 新人教B版選修1-1_第4頁
高中數(shù)學(xué) 第二單元 圓錐曲線與方程 2.1.2 橢圓的幾何性質(zhì)(二)課件 新人教B版選修1-1_第5頁
已閱讀5頁,還剩52頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1第二章 2.1橢圓2.1.2橢圓的幾何性質(zhì)(二)21.進(jìn)一步鞏固橢圓的幾何性質(zhì).2.掌握直線與橢圓位置關(guān)系等相關(guān)知識(shí).學(xué)習(xí)目標(biāo)3題型探究問題導(dǎo)學(xué)內(nèi)容索引當(dāng)堂訓(xùn)練4問題導(dǎo)學(xué)5知識(shí)點(diǎn)一點(diǎn)與橢圓的位置關(guān)系思考1答案6思考2答案78知識(shí)點(diǎn)二直線與橢圓的位置關(guān)系思考1直線與橢圓有幾種位置關(guān)系?答案有三種位置關(guān)系,分別是相交、相切、相離.9思考2如何判斷直線y2x1與橢圓4x2y24的位置關(guān)系?答案4248(3)0,所以直線y2x1與橢圓4x2y24相交.10位置關(guān)系解的個(gè)數(shù)的取值相交兩解 0相切一解 0相離無解 00直線與橢圓相交有兩個(gè)公共點(diǎn).(2)0直線與橢圓相切有且只有一個(gè)公共點(diǎn).(3)0;(2)

2、直線與橢圓相切0;(3)直線與橢圓相離0,所以判定直線與橢圓的位置關(guān)系,方程及其判別式是最基本的工具.反思與感悟21解答22如圖,由直線l的方程與橢圓的方程可知,直線l與橢圓不相交.設(shè)直線m平行于直線l,則直線m的方程可以寫成4x5yk0.消去y,得25x28kxk22250.令方程的根的判別式0,得64k2425(k2225)0.23解方程得k125或k225.由圖可知,當(dāng)k25時(shí),直線m與橢圓的交點(diǎn)到直線l的距離最近,此時(shí)直線m的方程為4x5y250.24類型二弦長(zhǎng)與中點(diǎn)弦問題解答252627(2)當(dāng)P點(diǎn)恰好為線段AB的中點(diǎn)時(shí),求l的方程.解答28方法一當(dāng)直線l的斜率不存在時(shí),不合題意.所

3、以直線l的斜率存在.設(shè)l的斜率為k,則其方程為y2k(x4).消去y得(14k2)x2(32k216k)x(64k264k20)0.由于AB的中點(diǎn)恰好為P(4,2),29即x2y80.30由于P(4,2)是AB的中點(diǎn),x1x28,y1y24,即x2y80.31反思與感悟處理直線與橢圓相交的關(guān)系問題的通法是通過解直線與橢圓構(gòu)成的方程.利用根與系數(shù)的關(guān)系或中點(diǎn)坐標(biāo)公式解決,涉及弦的中點(diǎn),還可使用點(diǎn)差法:設(shè)出弦的兩端點(diǎn)坐標(biāo),代入橢圓方程,兩式相減即得弦的中點(diǎn)與斜率的關(guān)系.32解答33方法一設(shè)A(x1,y1),B(x2,y2),代入橢圓方程并作差,得a(x1x2)(x1x2)b(y1y2)(y1y2)

4、0.直線xy10的斜率k1.|x2x1|2.34聯(lián)立ax2by21與xy10,可得(ab)x22bxb10.35設(shè)A(x1,y1),B(x2,y2),且直線AB的斜率k1,3637類型三橢圓中的最值(或范圍)問題例例4已知橢圓4x2y21及直線yxm.(1)當(dāng)直線和橢圓有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;解答因?yàn)橹本€與橢圓有公共點(diǎn),38(2)求被橢圓截得的最長(zhǎng)弦所在的直線方程.解答設(shè)直線與橢圓交于A(x1,y1),B(x2,y2)兩點(diǎn),由(1)知5x22mxm210,所以當(dāng)m0時(shí),|AB|最大,此時(shí)直線方程為yx.39引申探究引申探究在例4中,設(shè)直線與橢圓相交于A(x1,y1),B(x2,y2)兩

5、點(diǎn),求AOB面積的最大值及AOB面積最大時(shí)的直線方程.解答404142反思與感悟解析幾何中的綜合性問題很多,而且可與很多知識(shí)聯(lián)系在一起出題,例如不等式、三角函數(shù)、平面向量以及函數(shù)的最值問題等.解決這類問題需要正確地應(yīng)用轉(zhuǎn)化思想、函數(shù)與方程思想和數(shù)形結(jié)合思想.其中應(yīng)用比較多的是利用方程根與系數(shù)的關(guān)系構(gòu)造等式或函數(shù)關(guān)系式,這其中要注意利用根的判別式來確定參數(shù)的限制條件.43答案解析64445當(dāng)堂訓(xùn)練4612345答案解析47答案解析123454812345答案解析491234512122PFQFSPF FS四邊形12PFQFS四邊形5012345x2y30答案解析5112345解析52設(shè)直線l與橢圓的交點(diǎn)為M(x1,y1),N(x2,y2),得(12k2)x24kx0,1234553化簡(jiǎn)得k4k220,所以k21,所以k1.所以所求直線l的方程是yx1或yx1.1234554規(guī)律與方法1.直線與橢圓相交弦長(zhǎng)的有關(guān)問題(1)當(dāng)弦的兩端點(diǎn)的坐標(biāo)易求時(shí),可直接求出交點(diǎn)坐標(biāo),再用兩點(diǎn)間距離公式求弦長(zhǎng).55(3)如果直線方程涉及斜率,要注意斜率不存在的情況.2.解決橢圓中點(diǎn)弦問題的二種方法(1)根與系數(shù)的關(guān)系法:聯(lián)立直線方程和橢圓方程構(gòu)成方程組,消去一個(gè)未知數(shù),利用一元二次方程根與系數(shù)的關(guān)系以及中點(diǎn)坐標(biāo)公式解決.56(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論