期權(quán)價(jià)格知最新識概述_第1頁
期權(quán)價(jià)格知最新識概述_第2頁
期權(quán)價(jià)格知最新識概述_第3頁
期權(quán)價(jià)格知最新識概述_第4頁
期權(quán)價(jià)格知最新識概述_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第十章期權(quán)價(jià)格概述【學(xué)習(xí)目標(biāo)】本章是期權(quán)部分的重點(diǎn)內(nèi)容之一。 本章首先從內(nèi)在價(jià)值和時(shí)間價(jià)值兩個(gè)方面對期權(quán)價(jià)格 進(jìn)行了深入解析,分析了影響期權(quán)價(jià)值的主要因素,確定期權(quán)價(jià)格的基本邊界,探討了美式期權(quán)是否需要提前執(zhí)行的問題,從而畫出了期權(quán)價(jià)格曲線的基本形狀,最后,我們運(yùn)用無套利分析的基本方法,推出了看漲期權(quán)和看跌期權(quán)之間的平價(jià)關(guān)系。學(xué)習(xí)完本章,讀者應(yīng)能夠運(yùn)用期權(quán)價(jià)格曲線,深入掌握期權(quán)價(jià)格中的內(nèi)在價(jià)值和時(shí)間價(jià)值的有關(guān)內(nèi)容,掌握期權(quán)價(jià)值的主要影響因素和期權(quán)價(jià)格的基本邊界,掌握看漲期權(quán)和看跌期權(quán)之間的平價(jià)關(guān)系,同時(shí)理解美式期權(quán)的提前執(zhí)行問題。如第八章所述,期權(quán)交易實(shí)質(zhì)上就是一種權(quán)利的交易。在這種交易中,期

2、權(quán)購買者為了獲得期權(quán)合約所賦予的權(quán)利,就必須向期權(quán)出售者支付一定的費(fèi)用。這一費(fèi)用就是期權(quán)費(fèi)(期權(quán)價(jià)格),即期權(quán)合約本身的價(jià)格。在期權(quán)交易中,期權(quán)價(jià)格(價(jià)值 1)的決定是一個(gè)重要而 復(fù)雜的核心問題。自1973年以來,許多專家和學(xué)者紛紛提出各自的期權(quán)定價(jià)模型,以說明 期權(quán)價(jià)格的決定和變動。在這些模型中,最著名的模型主要有如下兩個(gè):一個(gè)是布萊克-舒爾斯模型(The Black-Scholes Model ),另一個(gè)則是二項(xiàng)式模型( The Binominal Model )。在 第十一章,我們將對這兩個(gè)模型作一簡要的介紹和評價(jià)。在此之前,為了更好地說明這兩個(gè)模型的內(nèi)涵,我們有必要先對各種期權(quán)定價(jià)模型

3、的理論基礎(chǔ)一一期權(quán)價(jià)格的構(gòu)成、影響期權(quán)價(jià)格的主要因素以及期權(quán)價(jià)格的邊界等問題進(jìn)行深入的分析。第一節(jié)期權(quán)價(jià)格解析盡管在現(xiàn)實(shí)的期權(quán)交易中, 期權(quán)價(jià)格會受到多種因素的復(fù)雜影響,但從理論上說,期權(quán)價(jià)格都是由兩個(gè)部分組成的:一是內(nèi)在價(jià)值,二是時(shí)間價(jià)值。即期權(quán)價(jià)格=期權(quán)內(nèi)在價(jià)值+期權(quán)時(shí)間價(jià)值。一、期權(quán)的內(nèi)在價(jià)值期權(quán)的內(nèi)在價(jià)值(Intrinsic Value)是指期權(quán)合約本身所具有的價(jià)值,也就是期權(quán)多方行 使期權(quán)時(shí)可以獲得的收益的現(xiàn)值。我們曾經(jīng)在第八章中談及這一概念 1價(jià)格和價(jià)值本來是兩個(gè)不同的概念,它們之間是市場價(jià)格和理論價(jià)值的區(qū)別。但是在對期權(quán)費(fèi)的研究中,一般將這兩者混用。所謂的期權(quán)價(jià)格(Options

4、 Price)實(shí)際上就是期權(quán)價(jià)值(Options Value),即期權(quán)的合理公平價(jià)值。 詳見第八章第一節(jié)。例如,如果月票XYZ 的市場價(jià)格為每股 60美元,而以該股票為標(biāo)的資產(chǎn)的看得期權(quán)協(xié)議價(jià)格為每股50美元,那么這一看漲期權(quán)的購買方只要執(zhí)行此期權(quán)即可獲得1 000美元60 50 100 1 000美元(股票期權(quán)通常為美式期權(quán)且一張期權(quán)合約的交易單位為100股股票)。這1 000美元的收益就是看漲期權(quán)的內(nèi)在價(jià)值。從例子中我們可以很明顯地看到,一個(gè)期權(quán)合約有無內(nèi)在價(jià)值以及內(nèi)在價(jià)值的大小,取決于該期權(quán)執(zhí)行價(jià)格與其標(biāo)的資產(chǎn)市場價(jià)格之間的關(guān)系,即與期權(quán)是實(shí)值、虛值還是平價(jià)有很大的關(guān)系。具體來看,理解期

5、權(quán)的內(nèi)在價(jià)值,需要注意兩個(gè)方面的問題:其一,歐式期權(quán)和美式期權(quán)內(nèi)在價(jià)值存在一定的差異。由于歐式期權(quán)只能在到期日執(zhí)行,所以在到期以前的任一時(shí)刻,歐式期權(quán)的內(nèi)在價(jià)值應(yīng)該是到期時(shí)該期權(quán)內(nèi)在價(jià)值的現(xiàn)值。因此,對于歐式看漲期權(quán)來說,其內(nèi)在價(jià)值為(ST-X) 的現(xiàn)值。其中,如果標(biāo)的資產(chǎn)在期權(quán)存續(xù)期內(nèi)沒有現(xiàn)金收益,St的現(xiàn)值就是當(dāng)前的市價(jià)(S),而對于支付現(xiàn)金收益的資產(chǎn)來說,St的現(xiàn)值則為S-D,其中D表示在期權(quán)有效期內(nèi)標(biāo)的資產(chǎn)現(xiàn)金收益的現(xiàn)值。因此,無收益資產(chǎn)歐式看漲期權(quán)的內(nèi)在價(jià)值等于S-Xe-r(T-t) , 而有收益資產(chǎn)歐式看漲期權(quán)的內(nèi)在價(jià)值等于S-D-Xe -r(T-t)。 同樣道理,無收益資產(chǎn)歐式看

6、跌期權(quán)的內(nèi)在價(jià)值都為X e-r(T-t)-S,有收益資產(chǎn)歐式看跌期權(quán)的內(nèi)在價(jià)值都為X e-r(T-t)+D-S。美式期權(quán)與歐式期權(quán)的最大區(qū)別在于其可以提前執(zhí)行,因此, 美式期權(quán)的內(nèi)在價(jià)值就應(yīng)該等于其即時(shí)執(zhí)行的收益,而無需對X 進(jìn)行貼現(xiàn)。但是,我們在后文將證明,美式看漲期權(quán)當(dāng)中, 如果標(biāo)的資產(chǎn)是沒有現(xiàn)金收益的,在期權(quán)到期前提前行使無收益美式看漲期權(quán)是不明智的。因此無收益資產(chǎn)美式看漲期權(quán)價(jià)格等于歐式看漲期權(quán)價(jià)格,其內(nèi)在價(jià)值也就等于S-Xe-rT。另外,有收益資產(chǎn)美式看漲期權(quán)雖然有提前執(zhí)行的可能,但可能性較小,因此一般都認(rèn)為其內(nèi)在價(jià)值也等于S-D-Xe -r(T-t), 即也等于相應(yīng)的歐式看漲期權(quán)內(nèi)

7、在價(jià)值。對于美式看跌期權(quán)來說,由于提前執(zhí)行有可能是合理的,因此其內(nèi)在價(jià)值與歐式看跌期權(quán)不同。其中,無收益資產(chǎn)美式期權(quán)的內(nèi)在價(jià)值等于X-S,有收益資產(chǎn)美式期權(quán)的內(nèi)在價(jià)值等于X+D-S o因此, 歐式期權(quán)和美式期權(quán)內(nèi)在價(jià)值的主要差異就在于貼現(xiàn)與否,但現(xiàn)實(shí)生活中常常不考慮貼現(xiàn)問題,而將它們視為相同,都采用美式期權(quán)即時(shí)執(zhí)行的內(nèi)在價(jià)值。其二,期權(quán)的內(nèi)在價(jià)值應(yīng)大等于0。將期權(quán)的內(nèi)在價(jià)值與實(shí)值、虛值和平價(jià)等相聯(lián)系,從理論上說,實(shí)值期權(quán)內(nèi)在價(jià)值為正,虛值期權(quán)內(nèi)在價(jià)值為負(fù),而平價(jià)期權(quán)內(nèi)在價(jià)值為零。但從實(shí)際來看,期權(quán)多頭方是不會執(zhí)行虛值期權(quán) (即標(biāo)的資產(chǎn)市價(jià)低于協(xié)議價(jià)格的看漲期權(quán)和標(biāo)的資產(chǎn)市價(jià)高于協(xié)議價(jià)格的看跌期

8、權(quán))的,因此內(nèi)在價(jià)值至少等于零。圖 10.1 給出了期權(quán)內(nèi)在價(jià)值的曲線。顯然平價(jià)點(diǎn)隨著歐式、美式期權(quán)和有無收益而變化。 從圖中我們可以進(jìn)一步看出,在執(zhí)行價(jià)格一定的時(shí)候,標(biāo)的資產(chǎn)的市場價(jià)格就決定了期權(quán)內(nèi)在價(jià)值的大小,例如對于看漲(看跌)期權(quán)來說,平價(jià)點(diǎn)及其左(右)側(cè)的期權(quán)內(nèi)在價(jià)值都為零,而平價(jià)點(diǎn)右(左)側(cè)的期權(quán)內(nèi)在價(jià)值則為正數(shù),價(jià)格越高(低),內(nèi)在價(jià)值越大。相反地, 如果市場價(jià)格一定,期權(quán)的執(zhí)行價(jià)格就決定了內(nèi)在價(jià)值的大小。當(dāng)執(zhí)行價(jià)格提高(降低)時(shí),圖10.1 (a)和(b)中的兩條內(nèi)在價(jià)值線都要向右(左)移動,也就意味著在同一市場價(jià)格水平上,看漲期權(quán)的內(nèi)在價(jià)值減少(增大),而看跌期權(quán)的內(nèi)在價(jià)值則

9、相應(yīng)地增大(減少) 。齊漲期權(quán)價(jià)格實(shí)值虛值平價(jià)點(diǎn)S(b)看跌期權(quán)內(nèi)在價(jià)值曲線內(nèi)在價(jià)值曲線圖10.1期權(quán)內(nèi)在價(jià)值曲線二、期權(quán)的時(shí)間價(jià)值內(nèi)在價(jià)值是決定期權(quán)價(jià)格的主要因素,但并非唯一的因素。在現(xiàn)實(shí)市場中,各種期權(quán)通常是以高于內(nèi)在價(jià)值的價(jià)格交易的,平價(jià)期權(quán)和虛值期權(quán)在這一點(diǎn)上尤其明顯:雖然這兩類期權(quán)的內(nèi)在價(jià)值為零,但在到期以前,它們總是以高于零的價(jià)格在買賣的。這是因?yàn)樵谄跈?quán)價(jià)格中,還包含著一個(gè)重要的部分:期權(quán)的時(shí)間價(jià)值。與我們平時(shí)所理解的時(shí)間價(jià)值(即無風(fēng)險(xiǎn)利率,貨幣持有者暫時(shí)放棄貨幣所獲得的回報(bào))不同,期權(quán)的時(shí)間價(jià)值(Time Value )是指在期權(quán)有效期內(nèi)標(biāo)的資產(chǎn)價(jià)格波動為期權(quán)持有者帶來收益的可能

10、性所隱含的價(jià)值。換句話說,期權(quán)的時(shí)間價(jià)值實(shí)質(zhì)上是期權(quán)在其到期之前獲利潛力的價(jià)值。我們知道,期權(quán)的買方通過支付期權(quán)費(fèi),獲得了相應(yīng)的權(quán)利,即(近于)無限的收益可能和有限的損失。這意味著標(biāo)的資產(chǎn)價(jià)格發(fā)生同樣的上升和下降,所帶來的期權(quán)價(jià)值的變化是不對稱的,這一不對稱性,使得期權(quán)總價(jià)值超過了其內(nèi)在價(jià)值,就是期權(quán)時(shí)間價(jià)值的根本來源。與內(nèi)在價(jià)值不同,期權(quán)的時(shí)間價(jià)值通常不易直接計(jì)算,因此, 它一般是運(yùn)用期權(quán)的總價(jià)值減去內(nèi)在價(jià)值求得的。例如, 某債券的市場價(jià)格目前為105 美元, 而以該債券為標(biāo)的資產(chǎn)、執(zhí)行價(jià)格為100 美元的看漲期權(quán)則以6.5 美元成交。那么,該看漲期權(quán)的內(nèi)在價(jià)值為5美元( 105 美元 10

11、0 美元) ,而它的時(shí)間價(jià)值則為1.5美元( 6.5美元 5美元) 。影響期權(quán)時(shí)間價(jià)值大小的主要因素有:1. 到期時(shí)間由于期權(quán)時(shí)間價(jià)值代表到期之前期權(quán)帶來收益的可能性。因此,距離到期的時(shí)間越長,期權(quán)時(shí)間價(jià)值一般來說越大。對于美式期權(quán)來說,這一點(diǎn)顯然是肯定的;而歐式期權(quán)由于只能在到期日執(zhí)行,所以這一關(guān)系不一定成立,但總的來說其時(shí)間價(jià)值也是隨著時(shí)間的延長而增大的。這意味著在一般情況下,期權(quán)的邊際時(shí)間價(jià)值都是正的。但是, 我們應(yīng)注意到,隨著時(shí)間的延長,期權(quán)時(shí)間價(jià)值的增幅是遞減的。這就是期權(quán)的邊際時(shí)間價(jià)值遞減規(guī)律。換句話說,對于到期日確定的期權(quán)來說,在其它條件不變時(shí),隨著時(shí)間的流逝,其時(shí)間價(jià)值的減小是

12、遞增的。這意味著,當(dāng)時(shí)間流逝同樣長度,期限長的期權(quán)的時(shí)間價(jià)值減小幅度將小于期限短的期權(quán)時(shí)間價(jià)值的減小幅度。這一點(diǎn)對組建和分析期權(quán)差期組合和對角組合是很重要的。2. 標(biāo)的資產(chǎn)價(jià)格的波動率標(biāo)的資產(chǎn)價(jià)格的波動率是指證券資產(chǎn)收益率單位時(shí)間內(nèi)的標(biāo)準(zhǔn)差,因此, 標(biāo)的資產(chǎn)價(jià)格的波動率是用來衡量標(biāo)的資產(chǎn)未來價(jià)格變動不確定性的指標(biāo)。由于期權(quán)多頭的最大虧損額僅限于期權(quán)價(jià)格,而最大盈利額則取決于執(zhí)行期權(quán)時(shí)標(biāo)的資產(chǎn)市場價(jià)格與協(xié)議價(jià)格的差額,因此波動率越大,無論是看漲期權(quán)還是看跌期權(quán),期權(quán)的時(shí)間價(jià)值都應(yīng)越大。3. 內(nèi)在價(jià)值此外, 期權(quán)的時(shí)間價(jià)值還受期權(quán)內(nèi)在價(jià)值的影響。以無收益資產(chǎn)看漲期權(quán)為例,當(dāng) S=Xe-r(T-t)

13、時(shí),期權(quán)的時(shí)間價(jià)值最大。當(dāng) S-X e-r(T-t)的絕對值增大時(shí),期權(quán)的時(shí)間價(jià)值是遞減的, 如圖 10.2所示。我們舉個(gè)例子來說明期權(quán)內(nèi)在價(jià)值與時(shí)間價(jià)值之間的關(guān)系。假設(shè)A 股票(無紅利)的市價(jià)為 9.05元, A 股票有兩種看漲期權(quán),其協(xié)議價(jià)格分別為X1=10 元,X2=8 元,它們的有效期都是1 年, 1 年期無風(fēng)險(xiǎn)利率為10%(連續(xù)復(fù)利)。這兩種期權(quán)的內(nèi)在價(jià)值分別為0 和1.81 元。那么這兩種期權(quán)的時(shí)間價(jià)值誰高呢?假設(shè)這兩種期權(quán)的時(shí)間價(jià)值相等,都等于 2 元, 則第一種期權(quán)的價(jià)格為2 元, 第二種期權(quán)的價(jià)格為3.81 元。那么讓讀者從中挑一種期權(quán),你們愿意挑哪一種呢?為了比較這兩種期權(quán)

14、,我們假定1年后出現(xiàn)如下三種情況:情況一:St=14元。則期權(quán)持有者可從期權(quán)1中獲利(14-10-2e0.1) =1.79元,可從期權(quán)2中獲利(14-8-3.8"1) =1.79元。期權(quán)1獲利金額等于期權(quán) 2。情況二:St=10元。則期權(quán)1虧2e0.1=2.21元,期權(quán)2也虧3.81e0.1-2=2.21元。期權(quán)1 虧損等于期權(quán)2。情況三:St=8元。則期權(quán)1虧2e0.1=2.21元,而期權(quán)2虧3.81 e0.1=4.21元。期權(quán)1虧損 少于期權(quán)2。由此可見,無論未來 A股票價(jià)格是漲是跌還是平,期權(quán)1均優(yōu)于或等于期權(quán) 2。顯然,期權(quán)1的時(shí)間價(jià)值不應(yīng)等于而應(yīng)高于期權(quán)2。我們再來比較如下

15、兩種期權(quán)。X1=10元,X3=12元。其它條件與上例相同。顯然,期權(quán)1的內(nèi)在價(jià)值為0,期權(quán)3的內(nèi)在價(jià)值雖然也等于 0,但S-X e-r(T-t)卻等于-1.81元。通過同樣 的分析,我們也可以得出期權(quán)1的時(shí)間價(jià)值應(yīng)高于期權(quán)3的結(jié)論。綜合這三種期權(quán),我們就可以得出無收益資產(chǎn)看漲期權(quán)的時(shí)間價(jià)值在S=X e-r(T-t)點(diǎn)最大的結(jié)論。通過同樣的分析,我們還可以得出如下結(jié)論:有收益資產(chǎn)看漲期權(quán)的時(shí)間價(jià)值在S=D+Xe-r(T-t)點(diǎn)最大,而無收益資產(chǎn)歐式看跌期權(quán)的時(shí)間價(jià)值在S= Xe-r(T-t)點(diǎn)最大,有收益資產(chǎn)歐式看跌期權(quán)的時(shí)間價(jià)值在S= Xe-r(T-t)-D點(diǎn)最大,無收益資產(chǎn)美式看跌期權(quán)的時(shí)間

16、價(jià)值在S= X點(diǎn)最大,有收益資產(chǎn)美式看跌期權(quán)的時(shí)間價(jià)值在S= X-D點(diǎn)最大。圖10.2無收益資產(chǎn)看漲期權(quán)時(shí)間價(jià)值與(S-X e-r(T-t)的關(guān)系弄清時(shí)間價(jià)值與內(nèi)在價(jià)值的上述關(guān)系對于組建和分析期權(quán)的差期組合和對角組合也很 重要。第二節(jié)期權(quán)價(jià)格的影響因素期權(quán)價(jià)格既然由內(nèi)在價(jià)值和時(shí)間價(jià)值兩部分構(gòu)成,則凡是影響內(nèi)在價(jià)值和時(shí)間價(jià)值的因素,就是影響期權(quán)價(jià)格的因素??偟膩砜?,期權(quán)價(jià)格的影響因素主要有六個(gè),他們通過影響期權(quán)的內(nèi)在價(jià)值和時(shí)間價(jià)值來影響期權(quán)的價(jià)格。一、標(biāo)的資產(chǎn)的市場價(jià)格與期權(quán)的協(xié)議價(jià)格標(biāo)的資產(chǎn)的市場價(jià)格與期權(quán)的協(xié)議價(jià)格是影響期權(quán)價(jià)格最主要的因素。因?yàn)檫@兩個(gè)價(jià)格及其相互關(guān)系不僅決定著內(nèi)在價(jià)值,而且

17、還進(jìn)一步影響著時(shí)間價(jià)值。由于看漲期權(quán)在執(zhí)行時(shí),其收益等于標(biāo)的資產(chǎn)當(dāng)時(shí)的市價(jià)與協(xié)議價(jià)格之差。因此,標(biāo)的資產(chǎn)的價(jià)格越高、協(xié)議價(jià)格越低,看漲期權(quán)的價(jià)格就越高。對于看跌期權(quán)而言,由于執(zhí)行時(shí)其收益等于協(xié)議價(jià)格與標(biāo)的資產(chǎn)市價(jià)的差額,因此,標(biāo)的資產(chǎn)的價(jià)格越低、協(xié)議價(jià)格越高,看跌期權(quán)的價(jià)格就越高。二、期權(quán)的有效期如前所述,對于美式期權(quán)而言,由于它可以在有效期內(nèi)任何時(shí)間執(zhí)行,有效期越長,期權(quán)多頭獲利機(jī)會就越大,而且有效期長的期權(quán)包含了有效期短的期權(quán)的所有執(zhí)行機(jī)會,因此有效期越長,期權(quán)價(jià)格越高。對于歐式期權(quán)而言,由于它只能在期末執(zhí)行,有效期長的期權(quán)就不一定包含有效期短的 期權(quán)的所有執(zhí)行機(jī)會。這就使歐式期權(quán)的有效期

18、與期權(quán)價(jià)格之間的關(guān)系顯得較為復(fù)雜。例如,同一股票的兩份歐式看漲期權(quán),一個(gè)有效期1個(gè)月,另一個(gè)2個(gè)月,假定在6周后標(biāo)的股票將有大量紅利支付,由于支付紅利會使股價(jià)下降,在這種情況下,有效期短的期權(quán)價(jià)格甚至?xí)笥谟行陂L的期權(quán)。但在一般情況下(即剔除標(biāo)的資產(chǎn)支付大量收益這一特殊情況),由于有效期越長,標(biāo)的資產(chǎn)的風(fēng)險(xiǎn)就越大,空頭虧損的風(fēng)險(xiǎn)也越大,因此即使是歐式期權(quán),有效期越長,其期權(quán)價(jià)格也越高,即期權(quán)的邊際時(shí)間價(jià)值( Marginal Time Value)為正值。另外,由于期權(quán)經(jīng)常被作為避險(xiǎn)保值的工具,而期權(quán)費(fèi)則是保值者為了套期保值所支付的價(jià)格。所以,有效期越長,意味著保險(xiǎn)時(shí)間越長,避險(xiǎn)者所支付的保

19、險(xiǎn)費(fèi)也應(yīng)當(dāng)越高。三、標(biāo)的資產(chǎn)價(jià)格的波動率標(biāo)的資產(chǎn)價(jià)格的波動率對期權(quán)價(jià)格具有重要的影響?!皼]有波動率,則期權(quán)就是多余的”。1如前所述,波動率對期權(quán)價(jià)格的影響,是通過對時(shí)間價(jià)值的影響而實(shí)現(xiàn)的。波動率越大, 則在期權(quán)到期時(shí),標(biāo)的資產(chǎn)市場價(jià)格漲跌達(dá)到實(shí)值期權(quán)的可能性也就越大,而如果出現(xiàn)虛值期權(quán),期權(quán)多頭方虧損有限。因此,無論是看漲期權(quán)還是看跌期權(quán),其時(shí)間價(jià)值以及整個(gè)期權(quán)價(jià)格都隨著標(biāo)的資產(chǎn)價(jià)格波動率的增大而增大,隨標(biāo)的資產(chǎn)價(jià)格波動率的減小而降低。值得注意的是,與決定和影響期權(quán)價(jià)格的其他因素不同,在期權(quán)定價(jià)時(shí),標(biāo)的資產(chǎn)價(jià)格在期權(quán)有效期內(nèi)的波動率是一個(gè)未來的未知數(shù)。因此,在期權(quán)定價(jià)時(shí),要獲得標(biāo)的資產(chǎn)價(jià)格的波

20、動率,只能通過近似估計(jì)得到。估計(jì)波動率的方法主要有兩種:一是利用過去所觀察得到的標(biāo)的資產(chǎn)價(jià)格波動的歷史數(shù)據(jù),用以估計(jì)未來價(jià)格的波動率。這一方法求得的波動率被稱為“歷史波動率" (History Volatility )。另一種方法則是利用期權(quán)定價(jià)模型,設(shè)定波動率為 未知數(shù),將期權(quán)的市場價(jià)格和相應(yīng)的各個(gè)參數(shù)代入,推算出波動率,這種被推算出來的波動率則被稱為“隱含波動率”(Implied Volatility )。四、無風(fēng)險(xiǎn)利率影響期權(quán)價(jià)格的另一個(gè)重要因素是無風(fēng)險(xiǎn)利率,尤其是短期無風(fēng)險(xiǎn)利率。利率對期權(quán)價(jià)Todd E. Petzel (1989) Financial Futures and

21、 Options , New York: Quorum Books, p.45格的影響是比較復(fù)雜的,需要進(jìn)行區(qū)別分析。不同的分析角度,結(jié)論各不相同。首先,利率對期權(quán)價(jià)格的影響主要體現(xiàn)在對標(biāo)的資產(chǎn)價(jià)格以及貼現(xiàn)率的影響上。這一影響又需要從兩個(gè)方面加以探討:第一,我們可以從比較靜態(tài)的角度考察,即比較不同利率水平下的兩種均衡狀態(tài)。如果狀態(tài)1的無風(fēng)險(xiǎn)利率較高,則標(biāo)的資產(chǎn)的預(yù)期收益率也應(yīng)較高,這意味著對應(yīng)于標(biāo)的資產(chǎn)現(xiàn)在特定的市價(jià)(S),未來預(yù)期價(jià)格E(St)較高。同時(shí)由于貼現(xiàn)率較高,未來同樣預(yù)期盈利的 現(xiàn)值就較低。這兩種效應(yīng)都將減少看跌期權(quán)的價(jià)值。但對于看漲期權(quán)來說,前者將使期權(quán)價(jià)格上升,而后者將使期權(quán)價(jià)

22、格下降。由于前者的效應(yīng)大于后者,因此對應(yīng)于較高的無風(fēng)險(xiǎn)利 率,看漲期權(quán)的價(jià)格也較高。第二,我們可從動態(tài)的角度考察,即考察一個(gè)均衡被打破到另一個(gè)均衡的過程。在標(biāo)的資產(chǎn)價(jià)格與利率呈負(fù)相關(guān)時(shí)(如股票、債券等) ,當(dāng)無風(fēng)險(xiǎn)利率提高時(shí),原有均衡被打破, 為了使標(biāo)的資產(chǎn)預(yù)期收益率提高,均衡過程通常是通過同時(shí)降低標(biāo)的資產(chǎn)的期初價(jià)格和預(yù)期 未來價(jià)格,只是前者的降幅更大來實(shí)現(xiàn)的。同是貼現(xiàn)率也隨之上升。對于看漲期權(quán)來說,兩 種效應(yīng)都將使期權(quán)價(jià)格下降,而對于看跌期權(quán)來說,前者效應(yīng)為正,后者為負(fù),由于前者效 應(yīng)通常大于后者,因此其凈效應(yīng)是看跌期權(quán)價(jià)格上升。大家應(yīng)注意到,從兩個(gè)角度得到的結(jié)論剛好相反。因此我們在具體運(yùn)用

23、時(shí)要注意區(qū)別分析的角度,根據(jù)具體情況作全面的、深入的分析。其次,換一個(gè)討論的角度,如果就利率本身對期權(quán)價(jià)格的影響而言,利率的變動對看漲期權(quán)價(jià)格有正向的影響, 而對看跌期權(quán)的價(jià)格有反向的影響。這種影響在股票期權(quán)中表現(xiàn)得尤其明顯。因?yàn)閷τ谫I進(jìn)股票的投資者而言,買進(jìn)股票本身與買進(jìn)以該股票為標(biāo)的資產(chǎn)的看漲期權(quán)在某種程度上具有替代性,那么買進(jìn)看漲期權(quán)相對節(jié)省的資金顯然可以帶來機(jī)會收 益,因此看漲期權(quán)價(jià)格將隨無風(fēng)險(xiǎn)利率上升而上漲;同樣,買進(jìn)看跌期權(quán)則和直接賣出股票具有一定的替代性,在利率較高的時(shí)候, 投資者顯然傾向于選擇直接賣出股票,獲得資金用于再投資而賺取較高的利息收益,而買入看跌期權(quán)卻需要支付期權(quán)費(fèi),

24、因此利率和看跌期權(quán)價(jià)格成反向關(guān)系。除了以上兩個(gè)角度的分析,也有人從期權(quán)費(fèi)機(jī)會成本的角度來分析利率對期權(quán)價(jià)格的影 響、由于期權(quán)費(fèi)是在期權(quán)交易初期以現(xiàn)金方式直接支付的,因而具有機(jī)會成本。而這一機(jī)會成本顯然取決于利率的高低:當(dāng)無風(fēng)險(xiǎn)利率較高時(shí), 期權(quán)價(jià)格機(jī)會成本較高, 投資者將把資金從期權(quán)市場轉(zhuǎn)移到其他市場,從而導(dǎo)致期權(quán)價(jià)格下降;反之,當(dāng)無風(fēng)險(xiǎn)利率較低時(shí), 較低的機(jī)會成本顯然將帶來期權(quán)價(jià)格的上升??傊?,無風(fēng)險(xiǎn)利率對期權(quán)價(jià)格的影響是非常復(fù)雜的,在具體運(yùn)用的時(shí)候,需要全面分析,并針對特殊情況,判斷哪種影響更重要,從而得到相應(yīng)的結(jié)論。五、標(biāo)的資產(chǎn)的收益根據(jù)第八章的說明,標(biāo)的資產(chǎn)分紅或者是獲得相應(yīng)現(xiàn)金收益的

25、時(shí)候,期權(quán)合約并不進(jìn)行相應(yīng)的調(diào)整。這樣,標(biāo)的資產(chǎn)進(jìn)行分紅付息, 將減少標(biāo)的資產(chǎn)的價(jià)格,這些收益將歸標(biāo)的資產(chǎn)的持有者所有,同時(shí)協(xié)議價(jià)格并未進(jìn)行相應(yīng)調(diào)整。因此在期權(quán)有效期內(nèi)標(biāo)的資產(chǎn)產(chǎn)生現(xiàn)金收益將使看漲期權(quán)價(jià)格下降,而使看跌期權(quán)價(jià)格上升。由以上分析可知,決定和影響期權(quán)價(jià)格的因素很多,而且各因素對期權(quán)價(jià)格的影響也很復(fù)雜,既有影響方向的不同,又有影響程度的不同;各個(gè)影響因素之間,既有相互補(bǔ)充的關(guān) 系,又有相互抵消的關(guān)系。表 10-1對這些主要影響因素作了一個(gè)基本的總結(jié)。表10-1影響期權(quán)價(jià)格的主要因素變量歐式看漲,歐式看跌標(biāo)的資產(chǎn)巾場價(jià)格十一十一期權(quán)協(xié)議價(jià)格-+ 一十后效期?十十標(biāo)的資產(chǎn)價(jià)格波動率十十十

26、十無風(fēng)險(xiǎn)利率?紅利一十一十注:十表示正向的影響,一表示反向的影響,?則表示影響方向不一定。第三節(jié)期權(quán)價(jià)格的邊界為了推導(dǎo)出期權(quán)定價(jià)的精確公式,我們先得找出期權(quán)價(jià)格的上、下限。期權(quán)價(jià)值邊界的確定最早是由 Merton在1973年完成的參見 Robert Merton (1992) Continuous-Time Finance, Revised Edition, London: Basil Blackwell, p.255。他運(yùn)用隨機(jī)占優(yōu)(Stochastic Dominance)的概念, 提出了關(guān)于期權(quán)價(jià)格的基本理性條件。其基本思想如下:假設(shè)有兩個(gè)投資組合A和B,其投資報(bào)酬是不確定的。如果在給定

27、的期限內(nèi),在任何情況下組合A的投資收益都不低于 B的投資收益,則稱組合 A隨機(jī)優(yōu)于組合 Bo那么理性投資者必然選擇組合A,因此組合 A的價(jià)格必然高于組合 B的價(jià)格。由此,Merton得出期權(quán)價(jià)值非負(fù)的基本結(jié)論,即:c 0,C 0, p 0,P 0其中小寫的c和p表示歐式期權(quán)價(jià)值,大寫的 C和P則表示美式期權(quán)價(jià)值。這樣,Merton已經(jīng)給出了期權(quán)價(jià)值的一個(gè)下限。以此為基礎(chǔ),我們可以進(jìn)一步討論確 定期權(quán)邊界的問題。一、期權(quán)價(jià)格的上限(一)看漲期權(quán)價(jià)格的上限在任何情況下,期權(quán)的價(jià)值都不會超過標(biāo)的資產(chǎn)的價(jià)格。否則的話,套利者就可以通過買入標(biāo)的資產(chǎn)并賣出期權(quán)來獲取無風(fēng)險(xiǎn)利潤。因此,對于美式和歐式看漲期權(quán)

28、來說,標(biāo)的資產(chǎn)價(jià)格都是看漲期權(quán)價(jià)格的上限:c 7 PC S(10.1)同前所述,S代表標(biāo)的資產(chǎn)價(jià)格。(二)看跌期權(quán)價(jià)格的上限由于美式看跌期權(quán)的多頭執(zhí)行期權(quán)得到的最高價(jià)值為協(xié)議價(jià)格(X ),因此,美式看跌期權(quán)購買方所支付的價(jià)格(P )不應(yīng)該超過上限 X :P X(10.2)由于歐式看跌期權(quán)只能在到期日(T時(shí)刻)執(zhí)行,在T時(shí)刻,其最高價(jià)值為 X,因 此,歐式看跌期權(quán)價(jià)格(p)不能超過X的現(xiàn)值:p Xe r(T t)(10.3)其中,r代表T時(shí)刻到期的無風(fēng)險(xiǎn)利率,t代表現(xiàn)在時(shí)刻。二、期權(quán)價(jià)格的下限由于確定期權(quán)價(jià)格的下限較為復(fù)雜,我們這里先給出歐式期權(quán)價(jià)格的下限,并區(qū)分無收益與有收益標(biāo)的資產(chǎn)兩種情況。

29、(一)歐式看漲期權(quán)價(jià)格的下限1 .無收益資產(chǎn)歐式看漲期權(quán)價(jià)格的下限為了推導(dǎo)出期權(quán)價(jià)格下限,我們考慮如下兩個(gè)組合:組合A : 一份歐式看漲期權(quán)加上金額為Xe r(T t)的現(xiàn)金組合B: 一單位標(biāo)的資產(chǎn)在組合A中,如果現(xiàn)金按無風(fēng)險(xiǎn)利率投資則在T時(shí)刻將變?yōu)閄,即等于協(xié)議價(jià)格。此時(shí)多頭要不要執(zhí)行看漲期權(quán),取決于T時(shí)刻標(biāo)的資產(chǎn)價(jià)格(St)是否大于 X。若St>X,則 執(zhí)行看漲期權(quán),組合 A的價(jià)值為St;若St X,則不執(zhí)行看漲期權(quán),組合 A的價(jià)值為X。因此,在T 時(shí)刻,組合A 的價(jià)值為:max( ST , X )而在T時(shí)刻,組合B的價(jià)值為St。由于max( 8T , X)ST ,因此,在t時(shí)刻組合

30、A的價(jià)值也應(yīng)大于等于組合B,即:c+Xe-r(T-t)>S c>S-Xe-r(T-t)由于期權(quán)的價(jià)值一定為正,因此無收益資產(chǎn)歐式看漲期權(quán)價(jià)格下限為:c max S Xe r(T t) ,0( 10.4)2 . 有收益資產(chǎn)歐式看漲期權(quán)價(jià)格的下限我們只要將上述組合 A的現(xiàn)金改為D Xe r(T t) ,其中D為期權(quán)有效期內(nèi)資產(chǎn)收益的現(xiàn)值,并經(jīng)過類似的推導(dǎo),就可得出有收益資產(chǎn)歐式看漲期權(quán)價(jià)格的下限為:c max S D Xe r(T t) ,0( 10.5)(二)歐式看跌期權(quán)價(jià)格的下限1. 無收益資產(chǎn)歐式看跌期權(quán)價(jià)格的下限考慮以下兩種組合:組合C: 一份歐式看跌期權(quán)加上一單位標(biāo)的資產(chǎn)組合

31、D:金額為Xe r(T t)的現(xiàn)金在T時(shí)刻,如果St<X,期權(quán)將被執(zhí)行,組合 C價(jià)值為X;如果St>X,期權(quán)將不被執(zhí) 行,組合C價(jià)值為St,即在組合C的價(jià)值為:max( ST, X)假定組合D的現(xiàn)金以無風(fēng)險(xiǎn)利率投資,則在 T時(shí)刻組合D的價(jià)值為X。由于組合C的 價(jià)值在T時(shí)刻大于等于組合 D,因此組合C的價(jià)值在t時(shí)刻也應(yīng)大于等于組合 D,即:S Xe r(T t)Xe r(T t) S由于期權(quán)價(jià)值一定為正,因此無收益資產(chǎn)歐式看跌期權(quán)價(jià)格下限為:p max Xe r(T t) S,0( 10.6)2. 有收益資產(chǎn)歐式看跌期權(quán)價(jià)格的下限我們只要將上述組合D的現(xiàn)金改為D Xe r(T t)就

32、可得到有收益資產(chǎn)歐式看跌期權(quán)價(jià)格的下限為:p max D Xe r(T t) S,0( 10.7)從以上分析可以看出,歐式期權(quán)的下限實(shí)際上就是其內(nèi)在價(jià)值。三、美式期權(quán):是否需要提前執(zhí)行為了確定美式期權(quán)的價(jià)值及其邊界,我們需要對美式期權(quán)作更深入的分析。由于美式期權(quán)與歐式期權(quán)的唯一區(qū)別在于能否提前執(zhí)行,因此如果我們可以證明提前執(zhí)行美式期權(quán)是不合理的,那么在定價(jià)時(shí),美式期權(quán)就等同于歐式期權(quán),從而大大降低定價(jià)的難度。(一)無收益資產(chǎn)的美式期權(quán)1 看漲期權(quán)由于現(xiàn)金會產(chǎn)生收益,而提前執(zhí)行看漲期權(quán)得到的標(biāo)的資產(chǎn)無收益,再加上美式期權(quán)的時(shí)間價(jià)值總是為正的,因此我們可以直觀地判斷提前執(zhí)行無收益資產(chǎn)的美式看漲期權(quán)

33、是不明智的。為了精確地推導(dǎo)這個(gè)結(jié)論,我們考慮如下兩個(gè)組合:組合A : 一份美式看漲期權(quán)加上金額為Xe r(T t)的現(xiàn)金組合 B :一單位標(biāo)的資產(chǎn)在T時(shí)刻,組合A的現(xiàn)金變?yōu)閄,組合A的價(jià)值為max (St, X)。而組合B的價(jià)值為 St,可見,組合 A在T時(shí)刻的價(jià)值一定大于等于組合Bo這意味著,如果不提前執(zhí)行,組合 A 的價(jià)值一定大于等于組合B。我們再來看一下提前執(zhí)行美式期權(quán)的情況。若在 時(shí)刻提前執(zhí)行,則提前執(zhí)行看漲期權(quán)所得盈利等于S -X, 其中 S 表示 時(shí)刻標(biāo)的資產(chǎn)的市價(jià),而此時(shí)現(xiàn)金金額變?yōu)閄e r(T ),其中 r 表示 T- 時(shí)段的遠(yuǎn)期利率。因此,若提前執(zhí)行的話,在時(shí)刻組合A 的價(jià)值

34、為:S X Xe r(T ),而組合B 的價(jià)值為S 。由于 T , r 0 因此 Xe r(T t) X 。這就是說,若提前執(zhí)行美式期權(quán)的話,組合A 的價(jià)值將小于組合B。比較兩種情況我們可以得出結(jié)論:提前執(zhí)行無收益資產(chǎn)美式看漲期權(quán)是不明智的。因此,同一種無收益標(biāo)的資產(chǎn)的美式看漲期權(quán)和歐式看漲期權(quán)的價(jià)值是相同的,即:C=c( 10.8)因此,根據(jù)(10.4) ,我們可以得到無收益資產(chǎn)美式看漲期權(quán)價(jià)格的下限:C max S Xe r(T t) ,0( 10.9)2看跌期權(quán)為考察提前執(zhí)行無收益資產(chǎn)美式看跌期權(quán)是否合理,我們考察如下兩種組合:組合A : 一份美式看跌期權(quán)加上一單位標(biāo)的資產(chǎn)組合B:金額為

35、Xe r(T t)的現(xiàn)金若不提前執(zhí)行,則到 T時(shí)刻,組合A的價(jià)值為max (X, St),組合B的價(jià)值為X,因 此組合 A 的價(jià)值大于等于組合B。若在 時(shí)刻提前執(zhí)行,則組合 A的價(jià)值為X,組合B的價(jià)值為Xe ?(T ) ,因此組合A的價(jià)值也高于組合B 。比較這兩種結(jié)果我們可以得出結(jié)論:是否提前執(zhí)行無收益資產(chǎn)的美式看跌期權(quán),主要取決于期權(quán)的實(shí)值額(X-S) 、無風(fēng)險(xiǎn)利率水平等因素。一般來說,只有當(dāng)S 相對于 X 來說較低,或者r 較高時(shí),提前執(zhí)行無收益資產(chǎn)美式看跌期權(quán)才可能是有利的。由于美式期權(quán)可提前執(zhí)行,因此其其他條件相同的美式期權(quán)與歐式期權(quán)相比,顯然價(jià)格將更高,故而價(jià)值下限比(10.6)更嚴(yán)

36、格:P X S( 10.10)(二 )有收益資產(chǎn)的美式期權(quán)1 看漲期權(quán)由于提前執(zhí)行有收益資產(chǎn)的美式期權(quán)可較早獲得標(biāo)的資產(chǎn),從而獲得現(xiàn)金收益,而現(xiàn)金收益可以派生利息,因此在一定條件下,提前執(zhí)行有收益資產(chǎn)的美式看漲期權(quán)有可能是合理的。我們假設(shè)在期權(quán)到期前,標(biāo)的資產(chǎn)有n個(gè)除權(quán)日,ti, t2,tn為除權(quán)前的瞬時(shí)時(shí)刻,在這些時(shí)刻之后的收益分別為Di, D2,,Dn,在這些時(shí)刻的標(biāo)的資產(chǎn)價(jià)格分別為Si,S2,Sn。由于在無收益的情況下,不應(yīng)提前執(zhí)行美式看漲期權(quán),我們可以據(jù)此得到一個(gè)推論:在有收益情況下,只有在除權(quán)前的瞬時(shí)時(shí)刻提前執(zhí)行美式看漲期權(quán)方有可能是最優(yōu)的。因此我們只需推導(dǎo)在每個(gè)除權(quán)日前提前執(zhí)行的可

37、能性。我們先來考察在最后一個(gè)除權(quán)日(tn)提前執(zhí)行的條件。如果在tn時(shí)刻提前執(zhí)行期權(quán),則期權(quán)多方獲得Sn-X 的收益。若不提前執(zhí)行,則標(biāo)的資產(chǎn)價(jià)格將由于除權(quán)降到Sn-Dn。根據(jù)式(10.5),在tn時(shí)刻期權(quán)的價(jià)值(Cn)Cn cn max Sn Dn Xe r(T tn) ,0因此,如果:SnDn Xe r(T tn)Sn X即:Dn Xi e r(T tn)( i0.ii)則在tn提前執(zhí)行是不明智的。相反,如果Dn Xi e r(T tn)( i0.i2)則在 tn 提前執(zhí)行有可能是合理的。實(shí)際上,只有當(dāng)tn 時(shí)刻標(biāo)的資產(chǎn)價(jià)格足夠大時(shí),提前執(zhí)行美式看漲期權(quán)才是合理的。同樣,對于任意in ,在

38、ti 時(shí)刻不能提前執(zhí)行有收益資產(chǎn)的美式看漲期權(quán)條件是:i0.i3)DiXi e r(ti i ti)由于存在提前執(zhí)行更有利的可能性,有收益資產(chǎn)的美式看漲期權(quán)價(jià)值大于等于歐式看漲期權(quán),但基本下限相同:C c max S D Xe r(T t) ,0( i0.i4)2看跌期權(quán)由于提前執(zhí)行有收益資產(chǎn)的美式期權(quán)意味著自己放棄收益權(quán),因此收益使美式看跌期權(quán)提前執(zhí)行的可能性變小,但還不能排除提前執(zhí)行的可能性。通過同樣的分析,我們可以得出美式看跌期權(quán)不能提前執(zhí)行的條件是:D iX i e r (ti i ti ) DnXie r(T tn)由于美式看跌期權(quán)有提前執(zhí)行的可能性,因此其下限為:i0.i5)P m

39、ax( D X S,0)很顯然,美式期權(quán)下限實(shí)際上也是其內(nèi)在價(jià)值。第四節(jié)期權(quán)價(jià)格曲線的形狀在分析了期權(quán)內(nèi)在價(jià)值、時(shí)間價(jià)值、期權(quán)價(jià)格的影響因素和期權(quán)價(jià)格上下限之后,我們就可以初步推出期權(quán)價(jià)格曲線的基本形狀??偟膩砜?,期權(quán)價(jià)格是由內(nèi)在價(jià)值和時(shí)間價(jià)值兩部分組成的,其中最主要的影響因素是標(biāo)的資產(chǎn)市場價(jià)格和期權(quán)合約執(zhí)行價(jià)格,因此期權(quán)曲線圖的橫軸為標(biāo)的資產(chǎn)價(jià)格,縱軸則為期權(quán)價(jià)格。事實(shí)上,期權(quán)價(jià)格曲線就是由圖10.1和圖10.2疊加而成。同時(shí),看漲期權(quán)的上限總是等于標(biāo)的資產(chǎn)價(jià)格,看跌期權(quán)的上限則等于 執(zhí)行價(jià)格或執(zhí)行價(jià)格的現(xiàn)值;另外,期權(quán)的下限總是等于期權(quán)的內(nèi)在價(jià)值。一、看漲期權(quán)價(jià)格曲線由于歐式看漲期權(quán)和美式

40、看漲期權(quán)的價(jià)格邊界相同,所以可以將它們放在一起考察。首先,在標(biāo)的資產(chǎn)無收益的情況下,看漲期權(quán)價(jià)格的上限為S,下限為 maxS Xe r(T t),0,即期權(quán)的內(nèi)在價(jià)值。當(dāng)內(nèi)在價(jià)值等于零時(shí),期權(quán)價(jià)格就等于時(shí)間價(jià)值。時(shí)間價(jià)值在 S=Xe-r(T-t)時(shí)最大;當(dāng)S趨于0和 時(shí),時(shí)間價(jià)值也趨于 0,此時(shí)看漲期權(quán)價(jià) 值分別趨于0和S-X e-rTt)。特別地,當(dāng) S=0時(shí),C=c=0。此外,由于期權(quán)價(jià)格還受到標(biāo)的資產(chǎn)價(jià)格波動率、無風(fēng)險(xiǎn)利率、到期期限等因素的影響。因此我們需要進(jìn)一步考慮這些因素對期權(quán)價(jià)格曲線的影響。根據(jù)前文的分析,一般地,無風(fēng)險(xiǎn)利率越高、期權(quán)期限越長、標(biāo)的資產(chǎn)價(jià)格波動率越大,則期權(quán)價(jià)格曲線

41、以原點(diǎn)為中心,越往左上方旋轉(zhuǎn),但基本形狀不變,而且不會超過上限,如圖 10.3所示。圖10.3無收益資產(chǎn)看漲期權(quán)價(jià)格曲線有收益資產(chǎn)看漲期權(quán)價(jià)格曲線與圖10.3類似,只是把 X e-r(T-t)換成X e-r(T-t)+D,平價(jià)點(diǎn)發(fā)生了變化。二、看跌期權(quán)價(jià)格曲線1.歐式看跌期權(quán)價(jià)格曲線我們?nèi)匀幌瓤疾鞜o收益資產(chǎn)看跌期權(quán)的情形。歐式看跌期權(quán)的上限為Xe r(T t),下限為 max Xer(T t)S,0。當(dāng) Xer(T t)S 0時(shí),它就是歐式看跌期權(quán)的內(nèi)在價(jià)值,也是其價(jià)格下限,當(dāng) Xe r(T d S 0時(shí),歐式看跌期權(quán)內(nèi)在價(jià)值為0,其期權(quán)價(jià)格等于時(shí)間價(jià)值。當(dāng)S=Xe r(T t)時(shí),時(shí)間價(jià)值最

42、大。當(dāng)S趨于0和 時(shí),期權(quán)價(jià)格分別趨于Xe r(T t)和0。特別當(dāng)S=0時(shí),pV r(T t)Xe 。看跌期權(quán)價(jià)值以0為中心圖10.4無收益資產(chǎn)歐式看跌期權(quán)價(jià)格曲線無風(fēng)險(xiǎn)利率越低、期權(quán)期限越長、標(biāo)的資產(chǎn)價(jià)格波動率越高, 越往右上方旋轉(zhuǎn),但不能超過上限,如圖 10.4所示。有收益資產(chǎn)期權(quán)價(jià)格曲線與圖10.4相似,只是把Xe r(T t)換為D Xe r(T t)2.美式看跌期權(quán)價(jià)格曲線對于無收益標(biāo)的資產(chǎn)來說,美式看跌期權(quán)上限為X,下限為X-So但當(dāng)標(biāo)的資產(chǎn)價(jià)格足夠低時(shí),提前執(zhí)行是明智白1此時(shí)期權(quán)的價(jià)值為X-So因此當(dāng)S較小時(shí),看跌期權(quán)的曲線與其下限或者說內(nèi)在價(jià)值 X-S是重合的。當(dāng)S=X時(shí),期

43、權(quán)時(shí)間價(jià)值最大。其它情況與 歐式看跌期權(quán)類似,如圖 10.5所示。有收益美式看跌期權(quán)價(jià)格曲線與圖10.5相似,只是把 X換成D+X。美式看跌期權(quán)價(jià)格圖10.5無收益資產(chǎn)美式看跌期權(quán)價(jià)格曲線第五節(jié) 看漲期權(quán)與看跌期權(quán)之間的平價(jià)關(guān)系一、歐式看漲期權(quán)與看跌期權(quán)之間的平價(jià)關(guān)系1 無收益資產(chǎn)的歐式期權(quán)在標(biāo)的資產(chǎn)沒有收益的情況下,為了推導(dǎo)c 和 p 之間的關(guān)系,我們考慮如下兩個(gè)組合:組合A : 一份歐式看漲期權(quán)加上金額為Xe r(T t)的現(xiàn)金組合B :一份有效期和協(xié)議價(jià)格與看漲期權(quán)相同的歐式看跌期權(quán)加上一單位標(biāo)的資產(chǎn)由于金額為Xe r(T t)的現(xiàn)金以無風(fēng)險(xiǎn)利率投資,期權(quán)到期時(shí)正好獲得等于執(zhí)行價(jià)格X的資

44、金,因此在期權(quán)到期時(shí),兩個(gè)組合的價(jià)值均為max(ST,X)。 由于歐式期權(quán)不能提前執(zhí)行,因此兩組合在時(shí)刻t 必須具有相等的價(jià)值,即:c Xe r(T t) p S( 10.16)這就是無收益資產(chǎn)歐式看漲期權(quán)與看跌期權(quán)之間的平價(jià)關(guān)系( Parity) 。 它表明歐式看漲期權(quán)的價(jià)值可根據(jù)相同協(xié)議價(jià)格和到期日的歐式看跌期權(quán)的價(jià)值推導(dǎo)出來,反之亦然。如果式(10.16)不成立,則存在無風(fēng)險(xiǎn)套利機(jī)會。套利活動將最終促使式(10.16)成立。2有收益資產(chǎn)的歐式期權(quán)在標(biāo)的資產(chǎn)有收益的情況下,我們只要把前面的組合A 中的現(xiàn)金改為D Xe r(T t) ,D 即為這筆現(xiàn)金收益的現(xiàn)值。我們就因?yàn)榻M合B 中持有的標(biāo)

45、的資產(chǎn)還能夠獲得現(xiàn)金收益,可推導(dǎo)出有收益資產(chǎn)歐式看漲期權(quán)和看跌c D Xe r(T t) p S( 10.17)從看漲期權(quán)和看跌期權(quán)的平價(jià)關(guān)系中我們可以對看漲期權(quán)和看跌期權(quán)的特性有更深入的了解。以看漲期權(quán)為例:首先,根據(jù)(10.17)有c p S Xe r (T t) D也就是說在其它條件相同的情況下,如果紅利的現(xiàn)值D 增加,那么期權(quán)的價(jià)值會下跌。其次,在沒有紅利的條件下,根據(jù)(10.16)有r(T t)p S Xe因此看漲期權(quán)等價(jià)于借錢買入股票,并買入一個(gè)看跌期權(quán)來提供保險(xiǎn)。和直接購買股票相比,看漲期權(quán)多頭有兩個(gè)優(yōu)點(diǎn):保險(xiǎn)和可以利用杠桿效應(yīng)。對看跌期權(quán)也可以做類似的分析。二、美式看漲期權(quán)和看

46、跌期權(quán)之間的關(guān)系1 無收益資產(chǎn)的美式期權(quán)由于P>p,從式(10.16)中我們可得:P c Xe r (T t) S對于無收益資產(chǎn)看漲期權(quán)來說,由于c=C,因此:P C Xer(T t)C P S Xe r(T t)(10.18)為了推導(dǎo)出C和P的更嚴(yán)密的關(guān)系,我們考慮以下兩個(gè)組合:組合A : 一份歐式看漲期權(quán)加上金額為X的現(xiàn)金組合B : 一份美式看跌期權(quán)加上一單位標(biāo)的資產(chǎn)如果美式期權(quán)沒有提前執(zhí)行,則在T時(shí)刻組合B的價(jià)值為max(ST,x),而此時(shí)組合 A的價(jià)值為max( St, X) Xer(T t) X。因此組合A的價(jià)值大于組合 B。如果美式期權(quán)在時(shí)刻提前執(zhí)行,則在 時(shí)刻,組合B的價(jià)值為X,而此時(shí)組合 A的價(jià)值大于等于Xer( t)。因此組合A的價(jià)值也大于組合 B。這就是說,無論美式組合是否提前執(zhí)行,組合組合A的價(jià)值也應(yīng)高于組合 B,即:c X由于c=C,因此,C XC P結(jié)合式(10.18),我們可得:A的價(jià)值都高于組合 B,因此在t時(shí)刻,P SP SS XS X C P S Xe r(T t)(10.19)由于美式期權(quán)可能提前執(zhí)行,因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論