




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、HermiteICA PCA WTMIT-BIHMIT-BIH 13ICAICASVM-96.77%46-ICA96.87%-ICA98.23%-ICA98.65%ICAICAIIMIT-BIH IIIAutomatic Patten Recognition of ECG Signals Based onIndependent Component Analysis Feature ExtractionABSTRACTCardiovascular disease is the leading cause of death around world.Electrocardiogram (ECGsu
2、pervising is the most important and efcient way of preventing heart attack.The types of ECG arrhythmia is an important standard to measure the variation of cardiovascular activity.Recognizing arrhythmia on its early stage is very important for diagnosing and fore-casting the state of illness,and it
3、is also critical for the further treatment of the patients.Those former research on recognizing heart beat arrhythmia mainly used the ECG morphology and heartbeat interval,wavelet transform or Hermit representation as the feature extraction meth-ods and achieved certain results.This thesis proposes
4、a new feature extraction method based on Independent Component Analysis(ICAto classify the heartbeat arrhythmia.The method is used to recognize normal beats and the other13types of arrhythmia heart beats from the data provided by MIT-BIH arrhythmia database.ICA is a signal processing technique to ex
5、tract independent components from muti-dimensional mixed signals.It has been widely used in manyelds,such as biomedical signal processing,speech recognition,and antenna array processing.This thesis proposes two architectures for feature extraction based on independent component analysis:one is to le
6、arn the independent feature basis functions of ECG heartbeat signals,and the other is to learn the independent feature representation of ECG heartbeat signals.From computer experiments,it is demonstrated that both two architectures have their advantages and both are effective for the heartbeat recog
7、nition.In addition,an overcomplete feature set which is constructed by different types of fea-ture extraction methods is proposed in the thesis.By combining the characteristics of differ-ent types of features,the overcomplete features makes those different features work together and obtains a better
8、 feature representation of the ECG signals.In this thesis,an overcom-plete feature extraction method combining ICA basis function s coefcients and wavelet transform coefcients is propose for ECG recognition.Because there are some features thatare irrelevant to the classication or have redundant info
9、rmation in the overcomplete feature set,a feature selection based on mutual information is applied on the overcomplete features, and we obtain the relevant features for ECG recognition.We choose Support Vector Machine(SVMas the classier to accomplish the clas-sication.SVM is a pattern classication m
10、ethod based on Structural Risk Minimization principle.Because of its strong learning ability and generalization ability SVM has been applied to many areas.In our experiments,we use the training samples from normal ECG signals to learn the basis functions of the feature space,and all types of arrhyth
11、mia signals in to the space to extract features.Then we use these features to train a SVM with Gaussian Ra-dial Basis Function(Gaussian-RBFkernel,and obtain an integrated ECG signal recognition system.Each kind of feature extraction methods proposed in the thesis are tested in experiments and compar
12、ed:-If the wavelet features are used only,the average recognition accuracy is96.77%.-By the feature extraction architecture which use the ICA method to learn the sta-tistical independent basis functions,we obtain an average classication accuracyto96.87%.-By the feature extraction architecture which
13、use the ICA method to learn the sta-tistical independent features,the average accuracy for classication is98.23%-the average recognition accuracy improves to98.65%,when the recognition sys-tem takes the overcomplete features which constructed the ICA features and thewavelet features.and we also comp
14、are our method to the other methods proposed in recent years.Finally, computer simulations show that the overcomplete feature extraction based on ICA method could present the differences between each type of ECG arrhythmia signals better and could improve the ECG arrhythmia recognition.KEY WORDS:Ind
15、ependent Component Analysis,ECG,arrhythmia,Principal Compo-nent Analysis,Wavelet Transform,Overcomplete Feature,Mutual Information,MIT-BIH arrhythmia databaseVICA Independent Component AnalysisECG electrocardiographyWT Wavelet TransformPCA Principal Component AnalysisEMG electromyographyEEG electroe
16、ncephalographyMEG magnetoencephalographyHMM Hidden Markov ModelANN Artical Neural NetworkBSP Blind Signal ProcessingMIMO Multiple-Input Multiple-OutputBSS Blind Source SeparationBSE Blind Signal ExtractionMBD Multiple Blind DeconvolutionSVM Support Vector MachineRBF Radial Basis FunctionAPC Atrial P
17、remature ContractionPVC Premature Ventricular ContractionLBBB Left Bundle Branch Block BeatRBBB Right bundle Branch Block BeatPACE Paced beatAPB Atrial premature beatAAPB Aberrated atrial premature beat VF Ventricularutter waveFusion Fusion of ventricular and normal beatBAPB Block atrial premature b
18、eatJEB Nodal(junctionalescape beatFP Fusion of paced and normal beatVE Ventricular escape beatJPB Nodal(junctionalpremature beatCR Compression RatioPRD Percent root-mean-square differenceIX200712920071292007129Anais NinpCO21.1,(ECG0.04-0.07sPQRS TECG 1.1P0.11P-R60-90/0.12-0.20 1.1Fig1.1A standard EC
19、G heartbeat signalQRS QRSQ Q R RS QRSQRS Q R S QRS0.06-0.11S-T QRS TTQ-T QRS T0.32-0.44ECGECG ECGECGECG50ECGECGECG2ECG ECG ECG ECG Holter ECGECG 70ECG1.22020601( 1.24: (1.2 3( K-L(SOMKohonen2 (ICA,Independent Component Analysis (PCA,Principle Component Analysis Wavelet Analysis1.361ECGECG2ICA ICA3IC
20、A ICA4ICA5ICA6 5ICA2.1ICABSP-MIMOx (t =x 1(t , x 2(t , ···, x m (t Ts (t =s 1(t , s 2(t , ···, s n (t T 2.13y (t =y 1(t , y 2(t , ···, y n (t T42.2ICABSSBSEMBD3 . . . . . . . .s 1s 2s nv 1v 2v ky 1y 2y mx 1x + 2.1Fig 2.1General model of Blind Signal Proce
21、ssing (BSPProblem (b2.26Fig 2.2Linear Mixture Modelscaling permutationdelay52.2ICAICA ICA2.2.1PCAPCA 7PCAPCA xKarhunen-Loe ve PCAR xx=Ex(kx T(k=VV T(2.1=diag1,2,···,m(1>2>···>mmV=v1,v2,···,v mKarhunen-Loe ve xy p=V T S x(2.2y p=y1(k,y2(k,·
22、183;·,y n(kT PCs V S= v1,v2,···,v nT v i=v i1,v i2,···,v imT(i=1,2,···,n2.2.2Whiteningprewhitening sphering yR yy=Eyy T=I white x whitening Wy(k=Wx(k(2.3W=U1/2V T(2.4UV 2.12.2.3ICA2.2(a-x(k=As(k+v(k(2.5ICAA m×n v(k=v1(k,v2(k,···,v
23、 m(kT ICA71.mn2.3.4.1.H2.ICAp.d.f.p(sp i(s i3.4.ICA W x W yy(k=Wx(k=WAs(k(2.6 y W AWA=PD(2.7P DPCA ICAICAPCAPCA R yy=R xx R yy=IICAICA ICAICAICAon-line learning batch modelHWsxyg(tz2.36Fig 2.3Architecture of Infomax AlgorithmICA82.2.41988Linsker 9InfomaxNadalParga 10BellSejnowski 112.3g (·H (z
24、H (z =H (z 1+H (z 2+···+H (z n I (z (2.8I (z H (z i H (z i =Elog p (z i (2.9p (z i =p (y i |z i y i|=p (y i |g i (y i |(2.10(2.9H (z i =E logp (y i |gi (y i |(2.11(2.11(2.8H (z i =E logp (y 1|g 1(y 1|+···E log p (y m |g m (y m|I (z ICA=ni=1Elogp(y i|g i(y i|I(z(2.12H(zW
25、 =W(I(zWni=1Elogp(y i|g i(y i|(2.13 H(zI(zp(y i=|g i(y i|W ni=1Elog p(y i|g i(y i|I(z2.8H(zI(zni=1H(z i2.10p(y i=|g i(y i|H(zg i(y iWH(z=H(g(y=H(g(Wx=H(x+log|det(W|+ni=1Elog g i(y i(2.14WH(zW =H(xW+log|det(W|W+Wni=1Elog gi(y i(2.15H(xW0log|det(W|W=(W T1=WT(2.16Wni=1Elog gi(y i=(yx T(2.17(y12score fu
26、nction(y=g 1(y1g 1(y1,···,gn(y ngn(y nT(2.182.15H(zW=WT(yx T(2.19W=(WT(yx T(2.20 2.20InfomaxAmari13H(zWW T WWH(zWW T W.(2.21 W=(WT(yx TW T W=(I(yy TW(2.22I 2.2214W 2.20g i(y ilogistic y3tanh(yICA5510.90.80.70.60.50.40.30.20.10(alogistic function543210123451501005050100150(bCubic funct
27、ion5432101234510.80.60.40.200.20.40.60.81(ctanh function2.4Fig 2.4Frequently used nonlinear functions2.2.51997Girolami15p (y p G (y KL16J (y =D(p (y |p G (y =p (y log p (y p G (y d y (2.23p G (y p (y yWy =Wxyp (y yn i =1J (y i =ni =1D(p (y i |p G (y i =p (y log ni =1p (y i n i =1p G (y id y=p(ylogni
28、=1p(y ip G(yd y=p(ylogni=1p(y ip(yd y+p(ylogp(yp G(yd y=D(ni=1p(y i|p(y=I(y+J(y(2.24 2.23ni=1J(y i=I(yH(yp(ylog p G(yd y=I(yH(x12log(2en det yy T (2.25y yni=1j(y i=I(yH(x12log(2en(2.26Wni=1J(y i=W(I(yH(x12log(2en(2.27Wni=1J(y i=W(I(y(2.282.2.6x=As xp(x=|det W|p(s=|det W|ni=1p(s i(2.29ICA W=(w1,·
29、;··,w nT=A1,s i=w T i xp(x=|det W|ni=1p(w T i x(2.30T x(1,x(2,···,x(TL(W=Tt=1|det W|ni=1p(w Tix(2.31log L(W=Tt=1ni=1log p(w T i x(t+T log|det W|(2.321 T log L(W=Eni=1log p(w Tix+log|det W|(2.33(2.34W1 T log LW=WT+Eg(Wxx T(2.35g(y=(g1(y1,···,g n(y ng i(·W=
30、(WT+g(yx(2.36 Bell-Sejnowski11y=Wx2.2.77J(y i11223,i+14824,i+74843,i+1823,i4,i(2.37n,i y i n3,i=m3,i(2.384,i=m4,i3m22,i(2.39 m n,i y i n m n,i=Ey n ini=1J(y i=148i=1n24,i(2.401994Comon7L(W=ni=124,i(2.41w isign(4,ixy3iw iw i/ w i (2.42(2.43 2.2.8PCAPCAL(W=E xni=1(w Tixw i 22(2.44L(W=E xni=1g i(w Tixw
31、 i 22(2.45g i(·n i=1n17LMSER y i=w T i xICANLPCAx W W T W= WW T=I(3.47L(W=E xW T g(y 22(2.46 g(y=g1(y1,.,g n(y nTxW T g(y 22= yWW T g(y 22= yg(y 22=ni=1y ig i(y i2(2.47L(W=ni=1Ey ig i(y i2(2.482.3ICAICAICA18,1920ICAECGFECGECGEEG/MEG212.3.1ICAECG50Hz(EMG,.P QRS QRS P TICA ICA22,232.3.2ICA24,252.
32、3.3ICABSS(ICA2628P QRS TICA18ICA3.129x I(xI(xa i(xI(x=ni=1a i(xs i,(3.1s i I(xs ix=(x1,x2,.,x mT,x=As(3.2 ICAFourier3.1.13.13.1Fig3.1Nonsparse representation of signalPCA30PCAX=x1,x2,.,x MMS i=E(x(xT,xX(3.3 PCA P=p1,p2,.,p n na=P T(x i.(3.4 nPCA20ICAPCA(1PCAPCA(2PCA(3E(xT p i(xT p j=0,i=j.(3.5(4PCAI
33、=AA=T I PCA/3.1.2PCA3.2Field31PCA3.3PCA 3.3(aPCA3.3(b(ICAPCA ICA213.2Fig 3.2Sparse representation of signalxyPCA(axy(ICA(b3.3PCAFig 3.3The distributions of PCA basis functions and ICA basis functions under the non-Gaussiandistribution data22ICAIx 1 x 2x ni i SA 11A 12A 1n3.4ICA IFig 3.4The architect
34、ureI of ICA feature extraction(1ICA (2ICA W(3ICAPCA(4ICA3.2ICA3.2.1ICAICAXmnICAXICA1.ICAXm ×nXnm ijjiICA 3.42.X1m ×nXmIIx 1x 2x mi i SA 11A 12A 1m 3.5ICA IIFig 3.5The architectureII of ICA feature extractionni jijICA3.53.2.2ICAIICAx T =M i =1a i s T i ,(3.6xxa 1s T 1+a 2s T 2+,··
35、·,+a m s Tms T 1,s T 2,.,s Tma 1,a 2,···,a mxs T 1,s T 2,.,s Tm3.6XICASSs T 1,s T 2,.,s TmXICAS WX test B test=X testSSS ICA10000256ICA256256X10000×256ICAX m×256,m<256X m×256ICA mPrincipal Component Analysis,PCAm PCA ICA X m×256X m P m R m=XP m XX=Rm P T m
36、P m ICAW m P T m=S m,P T m=W1m S m(3.7X=Rm P T m=R m W1m S m(3.8 S m m mB=R m W1m(3.9B test=X test P m W1m(3.10PCA18PCA181898%1898% 3.6I3.2.3ICA IIICAx=Ni=1a i s i(3.11100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-5051001002
37、00-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505100100200-10-505103.6ICA IFig 3.6The basis functions of normal heartbeat learned by the ICA feature extraction architectureI =0.2·+(0.8·+0.1·+·
38、··3.7ICA 0.2·a i +(0.8·a j +0.1·a k +.Fig 3.7A normal heartbeat is a linear combination of ICA bases with certain coefcients,i.e.0.2·a i +(0.8·a j +0.1·a k +.xxa 1s 1+a 2s 2+···+a N s Ns 1,s 2,.,s Na 1,a 2,.,a Nxa 1,a 2,.,a Ns 1,s 2,.,s Nxa 1,a
39、2,.,a NXXICAAAa 1,a 2,.,a N3.7ICA overlapping00Kurtosis=Ex4Ex23(3.1232,33I IIIII XAX test S test=WX test W=A1256ICA X PCAP m=V m X m ICA P mP m=A m S m,A1m P m=S m(3.13A m m m S mS test=A1m V m X test(3.14I PCA18 3.8II18100200-0.0500.050.10.150100200-0.2-0.100.10.20100200-0.200.20.40.60100200-0.0500
40、.050.10.150100200-0.0500.050.10.150100200-0.1-0.0500.050.10100200-0.1-0.0500.050.10100200-0.100.10.20.30100200-0.200.20.40.60100200-0.100.10.20.30100200-0.2-0.100.10.20100200-0.2-0.100.10.20100200-0.100.10.20.30100200-0.2-0.100.10.20100200-0.100.10.20.30100200-0.4-0.200.20.40100200-0.100.10.20.30100
41、200-0.100.10.20.3(a10551005001000105510050010001500200010551002004006008001050510050010001050510050010001500105510020040060010551002004006008001050510020040060080010551002004006008001055100200400600800105051002004006001050510020040060010551002004006008001055100500100010505100200400600105051002004006
42、0080010551002004006001055100100200300400(b3.8ICA IIFig 3.8The basis functions of normal heartbeat learned by the ICA feature extraction architectureII284.14.1.1ICAICAICAT=I+W.(4.1I ICA W:=1:14.1.234(x(xl(x/ss,l=2s/2(2s xl(4.2fD1A1D2A2D3A3D4A44.1Fig4.1Decomposition of Discrete Wavelet TransformW f(s,
43、l=1s+f(xxsld x=f¯s(l(4.3¯s(t=1s(ts(t(ts l35=/360.5Hz40Hz 374Approximation A4 4.112Details304.14Table reftab:frequencyBand Frequent bands of4scale wavelet package decompositionAAAA40-11.25HzDAAA411.25-22.5HzADAA422.5-33.75HzDDAA433.75-45HzDD245-90HzD190-180Hz4.2 100256304.21.38402.315010015
44、02002500.50.511.5256 DimensionsV o l t a g e (m v (a5101520253021012330 DimensionsR a n g e(b4.2(a100256(b100db8Fig 4.2Wavelet features of heartbeat signals.(a100normal heartbeat signal in 256dimensions.(bThe corresponding wavelet features of the 100heartbeat signals.Using ”db8”wavelet and extractin
45、gthe A4features.32 4.343Fig 4.3Relations between the input features and the classes4.2.141x i cA B A B x ic (A =c (B x i4.2.2Mutual Information4.3f i f s CF C I (C ; F H (C ; F =H (C +H (F I (C ; F (4.4 33H (C ; F C F H (C H (F C FI (C ; F =I (F ; C = cP (c, f logP (c, f P (c P (f d f (4.5c fn F kS
46、F H (C |S I (C ; S 42(1F n S (2(MIf F I (C ; f (3I (C ; f f f F S f F, max I (C ; f ; F F f ; S f .(4(aF f I (f, S ; C (bF I (f, S ; C f iS max I (f i , S ; C ; F Ff , S f S.(5S4.4234I (C ; f i , f s f i 4.4,4I (C ; F Battiti MIFS 42I (f, S ; C I (C ; f I (f ; f f f 4 34 selection(4(aI (f ; s (bI (C
47、 ; f s SI (f ; s fS=0MIFSI (C ; f i I(f i ; f s f i=1MIFS4.53-1f s4.51MIFSMIFS434I (C ; f i , f s I (C ; f i , f s =I (C ; f s +I (C ; f i |f s .(4.6I (C ; f s 4.424I (C ; f i |f s f s 35 f i I (C ; f i |f s I (C ; f i |f s =I (C ; f i I (f s ; f i I (f s ; f i |C . (4.7I (f s ; f i I (f s ; f i |C 4.44I (f s ; f i 14H (f s |C H (f s =I (f s ; f i |C I (f s ; f i , (4.8I (f s ; f i |C I (f s ; f i |C = H (f s |C H (f s I (f s ; f i (4.9I (f i ; C |f s =I (f i ; C (1 H (f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 主要施工機械設備節(jié)約成本計劃
- 水泥廠移動操作平臺安全管理措施
- 六年級英語寫作能力計劃
- 國際貿(mào)易崗位招聘面試流程他
- 個別教育課程設計計劃
- 與相關單位的內(nèi)審監(jiān)督協(xié)調(diào)措施
- 智能樓宇可視化系統(tǒng)實習總結(jié)范文
- 外研版英語七年級下話題作文范文寫作素材
- 初二英語寫作能力教學計劃
- 四年級道德與法治學習效果計劃
- 臨床成人ICU患者外周動脈導管管理要點
- 計劃開、竣工日期和施工進度網(wǎng)絡圖112
- 中華民族共同體概論課件專家版9第九講 混一南北和中華民族大統(tǒng)合(元朝時期)
- 肩周炎的中醫(yī)治療課件
- 骨科手術后的康復用具與輔助器具
- 小學特色課程《口風琴課程》校本教材
- 《如何寫文獻綜述》課件
- 汽車美容店計劃書案例
- 信息機房火災事故應急處置方案
- 統(tǒng)計職業(yè)道德規(guī)范內(nèi)容和要求
- GB/T 16886.12-2023醫(yī)療器械生物學評價第12部分:樣品制備與參照材料
評論
0/150
提交評論