




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算1一一 定積分計(jì)算的基本公式定積分計(jì)算的基本公式 xadxxf)(考察定積分考察定積分 xadttf)(記記( )( ).xaxf t dt 積分上限函數(shù)積分上限函數(shù)YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算2abxyoxx 證證dttfxxxxa )()()()(xxx dttfdttfxaxxa )()()(x xYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算3 dttfdttfdttfxaxxxxa )()()(,)( xxxdttf由積分中值定理得由積分中值定理得( ),fx xx , 0
2、),( fx )(limlim00 fxxx ).()(xfx abxyoxx )( x x.xxx 在在 與與之之間間YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算4補(bǔ)充補(bǔ)充 ( )( )( )( )f b x b xf a x a x 證證: dttfxFxaxb)()(0)()(0 dttfxb )(0)(,)()(0dttfxa )()()()()(xaxafxbxbfxF ()()( )( )b xa xdFxf t dtdx YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算5例例1 1 求求.lim21cos02xdtextx 解解 1cos2xtdt
3、edxd,cos12 xtdtedxd)(cos2cos xex,sin2cos xex 21cos02limxdtextx xexxx2sinlim2cos0 .21e 00分析:這是分析:這是 型不定式,應(yīng)用洛必達(dá)法則型不定式,應(yīng)用洛必達(dá)法則.YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算6證證 xdtttfdxd0)(),(xxf xdttfdxd0)(),(xf 2000)()()()()()( xxxdttfdtttfxfdttfxxfxFYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算7 ,)()()()()(200 xxdttfdttftxxfxF)
4、0(, 0)( xxf, 0)(0 xdttf, 0)()( tftx, 0)()(0 xdttftx).0(0)( xxFYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算8證證, 1)(2)(0 dttfxxFx, 0)(2)( xfxF, 1)( xf, 01)0( F 10)(1)1(dttfF 10)(1dttf, 0 令令YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算9基本公式基本公式CxxF )()(,bax 證證YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算10令令ax ,)()(CaaF 0)()( dttfaaa,)(CaF ),
5、()()(aFxFdttfxa ,)()(CdttfxFxa 令令 bx).()()(aFbFdxxfba YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算11)()()(aFbFdxxfba 基本公式表明基本公式表明 baFx 注意注意求定積分問(wèn)題轉(zhuǎn)化為求原函數(shù)的問(wèn)題求定積分問(wèn)題轉(zhuǎn)化為求原函數(shù)的問(wèn)題.牛頓牛頓萊布尼茨公式萊布尼茨公式牛頓萊布尼茨公式溝通了微分學(xué)與積分學(xué)牛頓萊布尼茨公式溝通了微分學(xué)與積分學(xué)之間的關(guān)系之間的關(guān)系YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算12例例4 4 求求 .)1sincos2(20 dxxx原式原式202sincosxxx .2
6、3 例例5 5 設(shè)設(shè) , 求求 . 215102)(xxxxf 20)(dxxf解解解解 102120)()()(dxxfdxxfdxxf 102152dxxdx原原式式. 6 xyo12YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算13例例6 6 求求 .,max222 dxxx解解由圖形可知由圖形可知,max)(2xxxf ,21100222 xxxxxx 21210022dxxxdxdxx原式原式.211 xyo2xy xy 122 YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算14例例7 7 求求 解解.112dxx dxx 12112ln|x . 2l
7、n2ln1ln 解解 面積面積xyo 0sin xdxA0cos x . 2 YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算15二二 定積分的換元公式定積分的換元公式定理定理YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算16證證),()()(aFbFdxxfba ( )( ),tFt 令令dtdxdxdFt )()()(txf ),()(ttf ),()()()( dtttfYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算17)()( )()( FF ),()(aFbF ( )( )( )baf xdxF bF a )()( .)()(dtttf
8、YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算18應(yīng)用換元公式時(shí)應(yīng)注意應(yīng)用換元公式時(shí)應(yīng)注意:(1)(2)YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算19例例9 9 計(jì)算計(jì)算.sincos205 xdxx解解令令,cosxt 2 x, 0 t0 x, 1 t 205sincosxdxx 015dtt1066t .61 ,sin xdxdt YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算20例例10 10 計(jì)算計(jì)算解解 aadxxax022)0(.1令令,sintax ax ,2 t0 x, 0 t,costdtadx 原式原式 2022)sin1
9、(sincosdttatata 20cossincosdtttt 20cossinsincos121dttttt 20cossinln21221 tt.4 YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算21證證,)()()(00 aaaadxxfdxxfdxxf例例1111 當(dāng)當(dāng))(xf在在,aa 上連續(xù),且有上連續(xù),且有 )(xf為偶函數(shù),則為偶函數(shù),則 aaadxxfdxxf0)(2)(; )(xf為奇函數(shù),則為奇函數(shù),則 aadxxf0)(. YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算22 0)(adxxf 0)(adttf,)(0 adttf),()
10、(tftf aaaadxxfdxxfdxxf00)()()(;)(20 adttf),()(tftf aaaadxxfdxxfdxxf00)()()(. 0 YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算23奇函數(shù)奇函數(shù)例例12 12 計(jì)算計(jì)算解解.11cos21122 dxxxxx原式原式 1122112dxxx 11211cosdxxxx偶函數(shù)偶函數(shù) 1022114dxxx 10222)1(1)11(4dxxxx 102)11(4dxx 102144dxx.4 單位圓的面積單位圓的面積YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算24證證tx ,dtdx 0
11、 x, t x, 0 t 0)(sindxxxf 0)sin()(dttft,)(sin)(0 dttftYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算25 0)(sindttf 0)(sindtttf 0)(sindxxf,)(sin0 dxxxf.)(sin2)(sin00 dxxfdxxxf 02cos1sindxxxx 02cos1sin2dxxx 02)(coscos112xdx 0)arctan(cos2x.42 )44(2 0)(sindxxxfYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算26三、定積分的分部積分法三、定積分的分部積分法定積分的分
12、部積分公式定積分的分部積分公式證證 ,vuvuuv (),bbaauv dxuv ,bbbaaauvu vdxuv dx.bbbaaaudvuvvduYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算27例例1414 計(jì)算計(jì)算.arcsin210 xdx解解令令,arcsin xu ,dxdv ,12xdxdu ,xv 210arcsin xdx 210arcsin xx 21021xxdx621 )1(112120221xdx 12 21021x . 12312 則則YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算28例例1515 計(jì)算計(jì)算解解.2cos140 xx
13、dx,cos22cos12xx 402cos1xxdx 402cos2xxdx xdxtan240 401tan2xx xdxtan2140 401lnsec82x .42ln8 YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算29例例1616 計(jì)算計(jì)算解解.)2()1ln(102 dxxx 102)2()1ln(dxxx 1021)1ln(xdx102)1ln( xx 10)1ln(21xdx32ln dxxx 101121xx 2111 10)2ln()1ln(32lnxx . 3ln2ln35 YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算30解解例例171
14、7 設(shè)設(shè) 求求 21,sin)(xdtttxf.)(10 dxxxf 10)(dxxxf 102)()(21xdxf 102)(21xfx 102)(21xdfx)1(21f 102)(21dxxfxYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算31 21,sin)(xdtttxf,sin22sin)(222xxxxxxf 10)(dxxxf)1(21f 102)(21dxxfx 102sin221dxxx 1022sin21dxx 102cos21x ).11(cos21 , 0sin)1(11 dtttfYunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算32例例
15、1818 證明定積分公式證明定積分公式 2200cossinxdxxdxInnn nnnnnnnnnn,3254231,22143231 為正偶數(shù)為正偶數(shù)為大于為大于1的正奇數(shù)的正奇數(shù)證證 設(shè)設(shè),sin1xun ,sin xdxdv ,cossin)1(2xdxxndun ,cos xv YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算33 dxxxnxxInnn 2202201cossin)1(cossinx2sin1 0dxxndxxnInnn 22002sin)1(sin)1( nnInIn)1()1(2 21 nnInnI積分積分 關(guān)于下標(biāo)的遞推公式關(guān)于下標(biāo)的遞推公式nI
16、4223 nnInnI,直到下標(biāo)減到直到下標(biāo)減到0或或1為止為止YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算34,214365223221202ImmmmIm ,3254761222122112ImmmmIm ), 2 , 1( m,2200 dxI, 1sin201 xdxI,221436522322122 mmmmIm.325476122212212 mmmmIm于是于是YunnanUniversity4. 定積分的計(jì)算定積分的計(jì)算35四、雜例四、雜例例例19 19 計(jì)算極限計(jì)算極限111lim12nnnnn 11111111212111nnnnnnnnn 解解: 1( ),0 1.1f xx 令令它它在在, 連連續(xù)續(xù) 0 10,1,2,ininn 把把,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新解讀《CB-T 532 - 1999船用通風(fēng)管路放水塞》新解讀
- Brand KPIs for health insurance:ICICI Lombard in India-英文培訓(xùn)課件2025.4
- 基于注意力機(jī)制跨階段并行殘差融合模型的非侵入式負(fù)荷辨識(shí)
- 汽車傳感器與檢測(cè)技術(shù)電子教案:雷達(dá)傳感器
- 介紹大學(xué)活動(dòng)方案
- 介紹校園文化活動(dòng)方案
- 介紹美食活動(dòng)方案
- 從化老人慰問(wèn)活動(dòng)方案
- 倉(cāng)庫(kù)冬季活動(dòng)策劃方案
- 仙人吹氣活動(dòng)方案
- 23G409先張法預(yù)應(yīng)力混凝土管樁
- 【MOOC】中國(guó)稅法:案例·原理·方法-暨南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 鐵工電〔2023〕54號(hào)國(guó)鐵集團(tuán)關(guān)于印發(fā)《普速鐵路工務(wù)安全規(guī)則》的通知
- 環(huán)境有害物質(zhì)管理標(biāo)準(zhǔn)
- 動(dòng)火許可證(模板)
- DBJ53/T-39-2020 云南省民用建筑節(jié)能設(shè)計(jì)標(biāo)準(zhǔn)
- 妊娠合并糖尿病的護(hù)理23張課件
- 我的家鄉(xiāng)-濟(jì)南
- 磁粉探傷儀操作使用標(biāo)準(zhǔn)
- T-CSCS 016-2021 鋼結(jié)構(gòu)制造技術(shù)標(biāo)準(zhǔn)
- 數(shù)據(jù)中心機(jī)房工程施工組織方案
評(píng)論
0/150
提交評(píng)論