




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、CMA 盲均衡算法仿真研究摘要盲均衡是一種新興的自適應(yīng)均衡技術(shù),它不需要參考輸入的訓(xùn)練序列來維持正常工作,僅依據(jù)接收序列本身的先驗信息來均衡信道特性。自它出現(xiàn)后,就得到廣泛的關(guān)注,并在許多領(lǐng)域中得到應(yīng)用。本文系統(tǒng)地分析研究和歸納總結(jié)了盲均衡的根本理論。重點分析了Bussgang類盲均衡算法中的恒模(CMA, Constant Modulus Algorithm盲均衡算法。分析了傳統(tǒng)CMA盲均衡算法的收斂性能,由于采用固定步長,使得收斂速度和收斂精度之間相互制約,其應(yīng)用受到很大的限制。為了解決這一矛盾,本文提出了一種基于均方誤差MSE, Mean Square Error的CMA盲均衡算法,這是
2、一種利用時變步長來代替固定步長的自適應(yīng)變步長CMA盲均衡算法,并進行了計算機仿真。結(jié)果說明改良算法相對于CMA算法收斂性能有一定的提高。關(guān)鍵字關(guān)鍵字:盲均衡盲均衡,恒模算法恒模算法, 變步長變步長,均方誤差均方誤差CMA BLIND EQUALIZATION ALGORITHM SIMULATIONABSTRACTThis paper analyzed systematically studies and summaried the blind balanced elementary theory. Analysis focused on the Bussgang type blind equ
3、alization of constant modulus algorithm (CMA, Constant Modulus Algorithm) algorithm for blind equalization. This paper analyzes of the traditional CMA blind equalization algorithm performance, as a result of the use of fixed-step, making convergence speed and residual error become a contradiction, w
4、hich makes the application fields of CMA algorithm limited. In order to solve the contradiction ,this paper derives an improved CMA blind equalization algorithm utilizing the vary of MSE. This is an adaptive variable step-size CMA blind equalization algorithm, which uses a time-varying step size to
5、replace the fixed step size. The simulation with computer shows the improved algorithms have the better convergence performance than CMA algorithm.KEYWORDS: blind equalization , Constant Modulus Algorithm , variable step-size, Mean Square Error目錄目錄摘要中文.I摘要外文.II1 緒論.11.1 研究盲均衡的目的和意義 .1盲均衡的研究現(xiàn)狀.21.3 衡
6、量算法收斂性能的指標(biāo) .32 恒模算法.4盲均衡的根本結(jié)構(gòu).42.2 Bussgang 類盲均衡算法.62.2.1 決策指向算法.72.2.2 Sato 算法 .72.2.3 Godard 算法.82.3 恒模算法的提出 .82.4 恒模算法的理論推導(dǎo) .92.5 步長因子對恒模算法收斂性能的影響 .113 基于剩余誤差的變步長恒模盲均衡算法.173.1 恒模算法中剩余誤差的分析 .173.2 基于 MSE 的變步長恒模盲均衡算法.183.2.1 基于 MSE 的變步長恒模盲均衡算法的表達形式.183.2.2 算法性能分析.18基于 MSE 的變步長恒模算法的 MATLAB 實現(xiàn).19結(jié)論.2
7、4參考文獻.25附錄.26致謝.321 緒論盲均衡是一種新興的自適應(yīng)均衡技術(shù),它不需要參考輸入的訓(xùn)練序列來維持正常工作,僅依據(jù)接收序列本身的先驗信息來均衡信道特性。因此,在數(shù)據(jù)通信系統(tǒng)中不必發(fā)送訓(xùn)練序列,可以提高信道效率,同時盲均衡技術(shù)還可以獲得更好的均衡性能。盲均衡技術(shù)優(yōu)越的性能使它受到更加廣泛的關(guān)注,并在許多領(lǐng)域中得到應(yīng)用。盲均衡技術(shù)可有效地應(yīng)用于數(shù)字通信、雷達、地震和圖像處理等系統(tǒng)。盲均衡技術(shù)己成為數(shù)字通信領(lǐng)域中熱點研究的課題之一。在盲均衡的幾種算法中,又以CMAConstant Modulus Algorithm恒模算法的研究最為廣泛。1.1 研究盲均衡的目的和意義在數(shù)字通信系統(tǒng)中,帶
8、限發(fā)射、接收濾波器、放大器、時延與多徑效應(yīng)、發(fā)射機與接收機之間的相對運動、禍合效應(yīng)和多址干擾等因素綜合作用會使信號序列在傳遞過程中產(chǎn)生碼間干擾和信道間干擾.為了降低誤碼率,必須對碼間干擾進行適當(dāng)?shù)难a償。傳統(tǒng)的克服碼間干擾的方法是在接收端加均衡器,使均衡器的特性正好與信道的特性相反,使之能夠準(zhǔn)確補償傳輸信道的特性,從而消除碼間干擾。有些應(yīng)用場合如無線移動通信中信道是時變的,為了準(zhǔn)確地補償信道的特性,均衡器應(yīng)有及時調(diào)整參數(shù)、動態(tài)跟蹤信道變化的能力,具有這種 “智能特性的均衡器稱之為自適應(yīng)均衡器。這種均衡器在數(shù)據(jù)傳輸之前,通常需要預(yù)先發(fā)送一段收端和發(fā)端都的訓(xùn)練序列。接收機測量出該序列通過信道后產(chǎn)生的
9、變化或誤差,并依據(jù)該誤差信息對均衡器參數(shù)進行調(diào)整,最終使均衡器正好補償信道特性,從而使接收機能夠從均衡器輸出中得到幾乎無錯的發(fā)送信號,保證數(shù)據(jù)的可靠傳輸。這段過程被稱為訓(xùn)練,此時均衡器被稱為工作在訓(xùn)練模式。訓(xùn)練過程結(jié)束后,數(shù)據(jù)傳輸開始,此時發(fā)送信號是未知的,為了動態(tài)跟蹤信道特性可能發(fā)生的變化,接收機將均衡器輸出的判決信號作為參考信號,用來測量信號通過信道后產(chǎn)生的誤差,對均衡器輸出的信號繼續(xù)進行調(diào)整,此時均衡器工作在判決(Decision Directed)模式。根據(jù)自適應(yīng)濾波理論,均衡器在判決修正模式下能正常工作的條件是輸入信號的眼圖預(yù)先張開到一定程度 (判決結(jié)果的錯誤率極低),以保證均衡器可
10、靠地收斂。如果這個條件不滿足,就要由發(fā)端發(fā)送一個收端的訓(xùn)練序列對均衡器進行訓(xùn)練,使之收斂。因而訓(xùn)練過程也被稱為均衡器的學(xué)習(xí)過程,對一般通信系統(tǒng)來講是不可缺少的階段。然而訓(xùn)練序列的使用有如下幾點缺陷:(1) 由于訓(xùn)練序列的傳輸占用了局部時間,有效的信息速率降低了。(2) 對于嚴(yán)重的衰落信道,訓(xùn)練序列必須頻繁發(fā)送。(3) 當(dāng)通信發(fā)生短時中斷時,每一次新的通信開始之前必須發(fā)送訓(xùn)練序來初始化接收機。(4) 在某些特殊應(yīng)用場合,接收機無法得到訓(xùn)練信號(如在破譯截獲的敵方信號時)。由于自適應(yīng)均衡器具有上述缺陷,使之不能適應(yīng)現(xiàn)代數(shù)字通信系統(tǒng)高速度、大容量的開展趨勢。因此,近年來人們致力于研究不借助訓(xùn)練序列,
11、僅僅根據(jù)接收到的信號序列本身進行自適應(yīng)均衡的技術(shù)-盲均衡。與普通均衡器相比,盲均衡器具有收斂域大、應(yīng)用范圍廣等特點。盲均衡的研究現(xiàn)狀1975 年,日本學(xué)者 YSato 在對傳統(tǒng)的自適應(yīng)均衡的均方誤差函數(shù)進行了簡單改良后,第一次提出應(yīng)用于多幅度調(diào)制數(shù)據(jù)傳輸中的自恢復(fù)均衡的概念,后稱之為盲均衡。自此以后,許多專家學(xué)者都投入到盲均衡的研究中,從不同方面采用各種代價函數(shù)和優(yōu)化方法,得出許多應(yīng)用于不同場合的盲均衡算法。目前,盲均衡的研究主要分為以下幾類:(1) 基于高階譜的盲均衡一般情況下,基于二階統(tǒng)計量的盲均衡算法只能解決最小或最大相位信道的均衡問題,對非最小相位信道那么無能為力。但是系統(tǒng)輸出序列的高
12、階統(tǒng)計量既能反映信道傳遞函數(shù)的幅度信息和相位信息,又能有效抑制信道中的加性高斯噪聲,從而能用于各種信道辨識與參數(shù)估計。(2) 基于神經(jīng)網(wǎng)絡(luò)的盲均衡信道均衡也可以看作為分類問題,把均衡器看成判決器,從而盡量精確地恢復(fù)發(fā)送序列。因此有很強分類功能的神經(jīng)網(wǎng)絡(luò)就很適合做均衡器。神經(jīng)網(wǎng)絡(luò)為非線性動態(tài)系統(tǒng),它具有很大規(guī)模并行處理、高度的魯棒性等特征,尤其適于處理復(fù)雜的非線性問題。(3) 基于信號檢測的盲均衡有些文獻將基于信號檢測理論的盲均衡算法從原理上分為最大似然序列估計盲均衡算法,貝葉斯估計盲均衡算法,以及最小錯誤概率盲均衡算法等。(4) Bussgang 類盲均衡Bussgang 類盲均衡以橫向濾波器
13、為結(jié)構(gòu),利用信號的物理特征選用適宜的代價函數(shù)和誤差控制函數(shù)來調(diào)節(jié)均衡器抽頭,使得恢復(fù)信號接近于源信號。此類算法是以一種迭代方式進行盲均衡,并在均衡器輸出端對輸出信號作無記憶非線性變換。由于它是在傳統(tǒng)自適應(yīng)濾波的根底上開展而來,因此保存了傳統(tǒng)自適應(yīng)算法的簡單性,復(fù)雜度低,運算量小,概念清楚,易于實現(xiàn)。但這類算法的缺點是算法收斂時間長,手電后穩(wěn)態(tài)剩余誤差大,對非線性或存在零點的信道均衡效果不好等。目前橋位經(jīng)典的 Bussgang類算法由 Sato 算法、決策指向算法、BGR 算法、Stop and Go 算法、Godard 算法等。1.3 衡量算法收斂性能的指標(biāo)衡量算法收斂性能的指標(biāo)主要有收斂速度
14、、誤碼特性、運算復(fù)雜度、跟蹤時變信道的能力和抗干擾能力等。(1) 收斂速度均衡器開始工作后,需要一個收斂過程才能使均衡器的抽頭系數(shù)由初值逐漸過渡到最優(yōu)值,收斂速度越快,收斂過程所需時間越短,通信初期的誤碼數(shù)越少。(2) 誤碼特性在不增加算法計算復(fù)雜度和收斂速度滿足要求的前提下,降低均衡器的誤比特率BER具有重要意義。(3) 運算復(fù)雜度許多均衡算法盡管收斂速度快,但計算量太大,因而對硬件和軟件要求很高,使其實際應(yīng)用受到很大的限制。因此,在誤碼率滿足要求的前提下,應(yīng)降低均衡算法的計算復(fù)雜度。(4) 跟蹤時變信道的能力算法跟蹤時變信道的能力,主要表達在信道發(fā)生時變的情況下,算法能否收斂和穩(wěn)定的問題。
15、算法的跟蹤能力受其原理和參數(shù)的制約。(5) 抗干擾能力抗干擾能力是算法對信道中疊加的噪聲,尤其是突發(fā)強噪聲干擾的抵抗能力??垢蓴_能力差的算法遇到強噪聲干擾時收斂性能變差甚至無法收斂。2 恒模算法2.1 盲均衡的根本結(jié)構(gòu)圖 2-1 為盲均衡原理框圖。其中是發(fā)送序列,是未知信號的沖激響應(yīng))(nx)(nh包含了發(fā)射濾波器、傳播媒介和接受濾波器的綜合作用 ,為系統(tǒng)接收序列,同)(ny時也是盲均衡器的輸入序列,為噪聲信號,為均衡器的沖激響應(yīng),為被)(nn)(nw)(nx均衡器恢復(fù)的信號,為判決輸出信號。)( nx信道判決器算法盲均衡器)(nh)(nn)(nw)(nx)(nx)( nx圖 2-1 盲均衡系
16、統(tǒng)輸入序列假設(shè)為獨立同分布序列,通過一未知時變離散時間傳輸信道,)(nx)(nh考慮加性信道噪聲,得到均衡器接收序列可表示為:)(nn)(ny= (2-1)( )( )* ( )( )y nh nh nn n( ) ()( )ih i x nin n可知,是由和卷積而成,要想從中獲得,就需要對進行反( )y n( )x n( )h n( )y n( )x n( )y n卷積或解卷積運算,或等價辨識傳輸信道的逆信道.當(dāng)和時,可以( )h n1( )hn( )y n( )x n( )h n獲得。均衡器的訓(xùn)練就屬于此種情況但當(dāng)未知時,即3個參數(shù)中只有一個是,求解就( )x n相當(dāng)困難, 這就是盲均衡
17、或盲解積。 均衡器是線性自適應(yīng)濾波器系統(tǒng),它的輸出為)(nx (2-2)iinyiwnx)()()(假設(shè)不考慮信道噪聲的影響,那么由信道輸入端到均衡器輸出端的沖激響應(yīng)等于)(ng (2-3)kknwkhnwnhng)()()(*)()(因此均衡器輸出可以寫成)(nx (2-4)kknxngnx)()()(盲均衡的目的是通過算法調(diào)節(jié)均衡器權(quán)值使均衡器輸出序列逼近于信道輸入)(nx序列,這就要考慮到代價函數(shù)的選取以及采用的優(yōu)化算法。如果通過以上的選取)(nx獲得了一個理想均衡器,也即一個理想的逆濾波器,令表示理想均衡器的沖激響)( nw應(yīng),那么它與信道沖激響應(yīng)之間滿足“理想逆關(guān)系,表達如下 2-5
18、nknwkhnk,)( )(式中,為 Kronecker 函數(shù)。n目前的盲均衡算法一般采用有限長抽頭式橫向濾波器,其結(jié)構(gòu)如圖 2-2 所示。)(ny1z1z1z1z) 1( ny)(nx)(1nw)(2nw)(2nwL)(1nwL) 1(Lny)(0nw圖 2-2 橫向濾波器的結(jié)構(gòu)圖其中,橫向濾波器的長度為 L,橫向濾波器的輸入為 nY 2-6 ( ), (1),., (1)lny ny ny nLY濾波器的抽頭系數(shù)為( )nW 2-7011( )( ),( ),.,( )lLnw n w nwnW那么橫向濾波器的輸出可表示為)(nx= 2-810)()()(Liiinynwnx( )( )T
19、nnYW( ) ( )TnnWY理想的濾波器是無限長的,圖 2-2 所示濾波器是截斷的有限長濾波器,它是理想濾波器的近似模型,這就必然帶來剩余碼間干擾,濾波器的輸出僅僅是源信號)(nx的估計值。因此誤差信號為)(nx= 2-9)()()(nxnxne10)()()(Liinxinynw( ) ( )( )Tnnx nWY訓(xùn)練過程的任務(wù)是求出一組抽頭系數(shù),使均衡器能最有效地消除碼間干擾,)(nwi這組抽頭系數(shù)稱為最正確抽頭系數(shù)。為了使均衡器獲得最正確抽頭系數(shù),需optinw)(要根據(jù)不同應(yīng)用場合選用不同的優(yōu)化算法,盲均衡算法用對均衡器輸出信號的無記憶非線性變換來代替自適應(yīng)算法中的期望信號。2.2
20、 Bussgang類盲均衡算法無記憶非線性函數(shù)橫向濾波器)(nw)(nx)( nxBussgang盲均衡算法)(ny)(ne)(g圖2-3 Bussgang盲均衡器的原理圖圖 2-3 為Bussgang類盲均衡器原理圖。Bussgang類盲均衡算法作為盲均衡算法的一個分支,是在傳統(tǒng)的自適應(yīng)濾波器的根底上開展起來的。早期的盲均衡器以橫向濾波器為根本結(jié)構(gòu),利用信號的物理特征選擇適宜的代價函數(shù)和誤差控制函數(shù)來調(diào)節(jié)均衡器的權(quán)系數(shù)。這類算法是以一種迭代方式進行盲均衡,并在均衡器的輸出端對數(shù)據(jù)進行非線性變換,當(dāng)算法以平均值到達收斂時,被均衡的序列表現(xiàn)為Bussgang統(tǒng)計量。因此,此類算法稱為Bussga
21、ng類盲均衡算法。Bussgang類盲均衡算法的顯著特點是算法思路保持了傳統(tǒng)自適應(yīng)均衡的簡單性,物理概念清楚,沒有增加計算復(fù)雜度,運算量較小,便于實時實現(xiàn)。缺點是算法的收斂時間較長,收斂后剩余誤差較大,沒有解決均衡過程中的局部收斂問題,對非線性信道和存在零點的信道均衡效果不佳。Bussgang類盲均衡器采用一個非線性估計函數(shù)g(),使,用近似( ) ( )x ng x n( )x n代替。如果一個隨機過程滿足下式條件時:( )x n (2-10) ( ) () ( ( ) ()E x n x nkE g x n x nk那么該過程叫做Bussgang過程。式(2-10)揭示出,Bussgang
22、過程應(yīng)具有下述特性:均衡器輸出序列的自相關(guān)函數(shù)等于用該輸出序列作變元的無記憶非線性函數(shù)g()與輸出序( )x n列之間的互相關(guān)函數(shù)。1952年了ssgang第一個發(fā)現(xiàn)任何相關(guān)的高斯過程均具有上述性質(zhì)。1955年,rrett和ampard進一步證明了所有具有指數(shù)衰減自相關(guān)函數(shù)的隨機過程均具有這一性質(zhì),進一步推廣了Bussgang的結(jié)論。不同的Bussgang類盲均衡算法具有不同的無記憶非線性函數(shù)g(),但都必須滿足式(2-10)。歸納起來,Bussgang類盲均衡算法主要由以下兩個公式表述,其中,式(2-11)為均衡器輸出,式(2-12)為抽頭系數(shù)迭代公式。 (2-11)( )( ) ()LiL
23、x nn y niiW-2 (2-12)(1)( )nnW=W( )e n( )n*Y式中,2L+1為均衡器長度,為迭代步長因子。關(guān)于Bussgang算( )( )( ( )e nx ng x n法的收斂性,有以下重要結(jié)論:假設(shè)輸入序列是亞高斯的,并且 ( )x n的二階倒數(shù)為負值,那么Bussgang算法是收斂的。( ( )( ( )( )x ng x nx nBussgang算法有三個非常有名的特例 (DD)決策指向算法、Sato算法、Godard算法。下面再分別介紹一下。2.2.1 決策指向算法當(dāng)Bussgang算法收斂,并且眼圖“張開時,均衡器便以決策指向模式工作,均衡器橫向濾波器的抽
24、頭系數(shù)的最小均方誤差即可以象自適應(yīng)均衡器一樣進行控制。橫向濾波器)(nw)(nx)( nx)(ne自適應(yīng)算法閾值決策裝置輸入信號)(g)(ny圖2-4 決策指向均衡器的方框圖決策指向(Decision-Directed)模式使用的無記憶非線性函數(shù)是一“閥值決策裝置。給定橫向濾波器輸出信號,閡值決策裝置根據(jù)發(fā)射信號的字符集,對做出決策( )x n( )x n判斷,使判斷結(jié)果與最接近,例如,在二進制等概率數(shù)據(jù)序列的簡單情況下,( )x n( )x n數(shù)據(jù)和決策取值分別為 (2-13)1, 1( ) ( )sgn( ( )1, 0 x nx nx n對字符對字符將決策指向算法與 Bussgang 算
25、法作一比擬,可見決策指向算法是取 g(.)=sgn(.)的Bussgang 算法。2.2.2 Sato 算法M 進制 PAM(脈沖幅度調(diào)制)系統(tǒng)的盲均衡最早是 Sato 于 1975 年提出的。在 Sato算法里,將代價函數(shù)定義為: =E (2-14)( )J n( )sgn( ( ) x nx n2|式中,為常數(shù),定義為= .很顯然,Sato 算法是 Bussgang 算法取 g(.)2( )( ) E xnEx n|=sgn(.)時的一個特例。2.2.3 Godard算法D.N .Godard2于1980年提出了一種可用于二維數(shù)據(jù)通信系統(tǒng)的盲均衡算法,它最大的特點是將幅度的均衡和相位恢復(fù)獨
26、立進行,互不干擾,因而允許靈活采用載波同步方案,這對載波偏移較大的系統(tǒng)特別有用。Godard在算法中應(yīng)用了一種新的代價函數(shù) (2-15)2( )(| ( )|)ppnx nRJE式中,為一常數(shù)定義為pR (2-16)2| ( )| ( )|pppE x nRE x n將式(2-15)兩邊對均衡器權(quán)向量求導(dǎo)可得代價函數(shù)對的梯度ww (2-17)*2( )2|(|)nappnnnnpw wNnpEwwwRNwnnnJy yyy去掉上式中的數(shù)學(xué)期望操作即為Godard迭代算法中的隨機梯度,因此,均衡器抽頭系數(shù)的更新公式為: (2-18)*2( )| ( )|(| ( )|)ppnpwwx nx nx
27、 nRn+Lny 由上式可知,Godard算法是Bussgang算法中的無記憶非線性函數(shù) (2-19)( )( ( )( )( )( )( )x ng x nx nRx nx nx np-12p-1p|+|-|2.3 恒模算法的提出Godard最早提出了恒模算法(CMA),它是Bussgang類盲均衡算法中最常用的一種。Godard算法無記憶非線性函數(shù)。表達式g()如下: (2-20)( )( ( )( )( )( )( )x ng x nx nRx nx nx np-12p-1p|+|-|式中, p=1,2,.( )( )Rx nx n2ppp=E| /E| 當(dāng) p= 2 時,Godard算
28、法就是CMA算法。它通過調(diào)節(jié)線性均衡器的抽頭增益來到達使代價函數(shù)減小的目的。CMA以其計算復(fù)雜度低、易于實時實現(xiàn)等優(yōu)點,成為通信系統(tǒng)中廣泛應(yīng)用的盲均衡技術(shù)。恒模盲均衡算法適用于所有具有恒定包絡(luò)簡稱恒模和一局部非恒包絡(luò)如QAM的發(fā)射信號的均衡。CMA 算法無記憶非線性函數(shù) g(.)為: (2-21)( )( ( )( )( )( ) ( )x ng x nx nRx nx nx n32|+|-|式中,是常數(shù)。( )( )Rx nx n422=E| /E| 根據(jù)信號傳輸理論和圖 2-1 可知: 均衡器的輸入為: = (2-22)y( )n( )* ( )h nx n( )n n( ) ()( )i
29、ih n x nin n均衡器的輸出為: = = (2-23)( )x n( )* ( )w ny n( )* ()iiw ny ni( ) ( )TnnWYCMA 算法的權(quán)值迭代公式為 (2-24)22(1)( )( )( )( )*nnx n Rx nnW=WY|式中,為迭代步長因子,通常取足夠小的正常數(shù),它決定收斂的速度。2.4 恒模算法的理論推導(dǎo)CMA 算法的代價函數(shù)為: (2-25)222()( ) nJ WEx nR|選取這個代價函數(shù)的合理性在于,發(fā)送信號的功率應(yīng)該是恒定的,均衡器輸出信號的功率也應(yīng)該是恒定的。按照最速下降法的迭代公式: (2-26)J( )(1)( )( )nnn
30、nWW=WW有: (2-27)222( )( )2( )( )( )Jnx nEx nRnnWWW| 因為 = ,故有:( )x n( )nTY( )nW=2=2 (2-28) 2( )( )x nnW|( )nW( )( )( )( )nnnnT*TWYYW( )( )( )nnn*TYYW( )n*Y( )x n于是: =4E (2-29)( )( )JnnWW22( )( ) ( )x nRn x n*Y|用隨機梯度代替梯度的期望值,得到算法公式: 4a (2-30)(1)( )nnW=W( )x n22( )( )x nRn*Y|現(xiàn)在進一步考慮應(yīng)該取什么值才是合理的。對均衡器的要求是:
31、當(dāng)?shù)竭_理想均衡2R時,必須有:=0 (2-31)( )( )JnnWW/所謂到達理想均衡,就是均衡器輸出序城 n)是發(fā)送序列 x(n)的一個延時版本,即:= (2-32)( )x n( )jnTx n e其中,是一個固定的相位。()nT由=0 和式(3-9)得到:( )( )JnnWW/ (2-33)2( )( ) ( )E x nn x nR*Y2|( ) ( )En x n*Y也就是對應(yīng)元素相等 i=0, (2-34)*2( )( ) ( )( ) ( )E x ny n x nR E y n x n2|1, 2,.L 注意到均衡器輸入序列可以一般地寫成: (2-35) ( )( ) ()
32、jiy ix n h im e式中,包括發(fā)送濾波器、信道和接收機前端(不含均衡器)的復(fù)合信道沖激響應(yīng); h( ) t是頻率偏移和相位抖動引起的時變相位移。 ( ) i各個序列統(tǒng)計獨立,隨機相位與發(fā)送序列互不相關(guān)。在向量中的元只有( )nYy( ) i滿足的項對和有奉獻。這時顯然有:mn*( )( ) ( )E x ny n x n2|*( ) ( )E y n x n=kE (2-36)*( )( ) ( )E x ny n x n2|( )x n4|以及: E=kE (2-37)*( ) ( )y n x n( )x n2|式中,k 是信道引入確實定性奉獻。既然要求: (2-38)*2( )
33、( ) ( )( ) ( )E x ny n x nR E y n x n2|那么對取值的要求就是:2R= (2-39)2R( )( )Ex nEx n42|表 2-1 給出了 Godard 算法或常數(shù)模算法小結(jié)。表 2-1 中,CMA 是對常數(shù)膜性能曲面進行隨機梯度最小化運算的。與經(jīng)過訓(xùn)練的均衡器的單峰 MSE 性能曲面相比,盲均衡器的常數(shù)模性能曲面是多峰的。誤差曲面的多模式性和缺少期望響應(yīng)信號大大影響了 CMA 的收斂性能。CMA 在初始化、收斂速率與超量 MSE 等方面有它自己的特點。表 2-1 Godard 算法或常數(shù)模算法小結(jié)運算等式均衡器( )(1) ()LkkLx nwny nk
34、誤差22( )( )| ( )| e nx n Rx n更新( )(1)( )( )nnn e nwwyGodard 常數(shù)422| ( )| | ( )| Ex nREx n (1) 初始化由于 CMS 誤差曲面是非凸的,算法可能會收斂于一個非期望的最小值,這就說明了初始化過程的重要性。在實際中,所有的均衡器都用選擇中心方法來初始化,即除了中心參考系數(shù)設(shè)定為大于某一常數(shù)外,所有其他的系數(shù)都設(shè)為零。(2) 收斂速率經(jīng)過訓(xùn)練的 LMS 算法有一個有界的收斂速率,因為二次誤差曲面的 Hessian 矩陣它決定了曲率是恒定的。由于常熟模準(zhǔn)那么的誤差曲面是多峰的,并且包含鞍點,所以 CMA 的收斂速率在
35、鞍點附近較低,它與在一個局部最小值附近經(jīng)過訓(xùn)練的 LMS收斂速率相當(dāng)。(3) 超量 MSE在經(jīng)過訓(xùn)練的 LMS 算法中,超量 MSE 由步長、MMSE、濾波器系數(shù)的數(shù)量和輸入信號的功率決定,并且 CMA 的超量 MSE 也取決于原信號的峭度。2.5 步長因子對恒模算法收斂性能的影響實驗一:用 MATLAB 對 CMA 算法進行了仿真,輸入信號采用 4QAM 調(diào)制方式,信噪比為 20dB, 濾波器階數(shù)為 11, 信道采用典型 信道。步長分別為0.01、0.005、0.001,仿真實驗運行總次數(shù)為 3000 次。 (2-40) H z1Z2Z3Z4Z5Z6Z05001000150020002500
36、300035004000450050000.050.40.450.50.55代 代 代 代MSECMA u1=0.01u2=0.005u3=0.001(a)收斂曲線-1-0.500.51-1-0.8-0.6-0.4-0.60.81代 代代 代 -1.5-1-0.500.511.5-1.5-1-0.500.511.5代 代代 代(b) 4QAM 信號的星座圖 (c) 均衡器輸入星座圖-1.5-1-0.500.511.5-1.5-1-0.500.511.5代 代代 代 -1.5-1-0.500.511.5-1.5-1-0.500.511
37、.5代 代代 代(d) (e)-1-0.500.51-1-0.500.51代 代代 代(f)圖 2-5 不同步長 CMA 算法仿真圖 2-5(a)為 4QAM 信號通過典型 信道采用不同步長值對應(yīng)的收斂曲線比擬。圖2-5 (b)為 4QAM 信號的星座圖。圖 2-5 (c)(f)為 4QAM 信號通過典型 信道采用不同步長值對應(yīng)的均衡前后的星座圖。圖 2-5 (a)的仿真結(jié)果證實,采用大步長,能夠加快收斂速度,但同時會帶來大的穩(wěn)態(tài)剩余誤差和誤碼率。為了減小算法收斂后的穩(wěn)態(tài)剩余誤差和誤碼率應(yīng)采用小步長,但這樣會使算法收斂速度變慢。從圖 2-5 (b)(f)中可以看出,算法均衡后的星座更加集中、清
38、晰,具有更小的穩(wěn)態(tài)剩余誤差和誤碼率。實驗二:用 MATLAB 對 CMA 算法進行了仿真,輸入信號采用 4QAM 調(diào)制方式,信噪比為 15dB, 濾波器階數(shù)為 7, 信道采用普通信道。步長分別取 0.01、0.001,仿真實驗運行總次數(shù)為 3000 次。 (2-41) H z1Z2Z3Z4Z01002003004005006007000.81.8代 代 代 代MSECMA u1=0.01u2=0.001(a)收斂曲線-1-0.500.51-1-0.8-0.6-0.4-0.60.81代 代代 代-2-1012-2-1.5-1-0.500
39、.511.52代 代代 代(b) 4QAM 信號的星座圖 (c) 均衡器輸入星座圖-2-1012-2-1.5-1-0.500.511.52代 代代 代-2-1012-2-1.5-1-0.500.511.52代 代代 代(d) (e)圖 2-6 不同步長 CMA 算法仿真圖 2-6 (a)為 4QAM 信號通過普通信道采用不同步長值對應(yīng)的收斂曲線比擬。圖 2-6 (b)為 4QAM 信號的星座圖。圖 2-6 (c)(e)為 4QAM 信號通過普通信道采用不同步長值對應(yīng)的均衡前后的星座圖。圖 2-6 (a)的仿真結(jié)果證實,采用大步長,能夠加快收斂速度,但同時會帶來大的穩(wěn)態(tài)剩余誤差和誤碼率。為了減小
40、算法收斂后的穩(wěn)態(tài)剩余誤差和誤碼率應(yīng)采用小步長,但會使算法收斂速度變慢。從圖 2-6 (b)(e)中可以看出,算法均衡后的星座更加集中、清晰,具有更小的穩(wěn)態(tài)剩余誤差和誤碼率。由實驗一和實驗二得知在兩種不同信道下,迭代步長值越大,收斂速度就越快,但收斂后的穩(wěn)態(tài)誤差也就越大;減小步長值可以降低收斂后的穩(wěn)態(tài)誤差,但是會導(dǎo)致收斂速度的降低。Bussgang 類盲均衡算法的一般格式是,先建立一個代價函數(shù),使理想系統(tǒng)對應(yīng)于代價函數(shù)的極小值點,然后采用某種自適應(yīng)算法一步一步調(diào)整均衡器的抽頭系數(shù)來尋找代價函數(shù)的極值點,當(dāng)代價函數(shù)到達極值點后,抽頭系數(shù)也到達了最優(yōu)值。步長在算法收斂過程中起著非常重要的作用,采用大
41、步長,每次調(diào)整抽頭系數(shù)的幅度就大,表到達收斂性能上就是算法收斂速度和跟蹤速度快,當(dāng)均衡器抽頭系數(shù)接近最優(yōu)值時,抽頭系數(shù)將在最優(yōu)值附近一個較大的范圍內(nèi)來回抖動而無法進一步收斂,因而會有較大的穩(wěn)態(tài)剩余誤差。反之,采用小步長,每次調(diào)整抽頭系數(shù)的幅度就小,算法收斂速度和跟蹤速度慢,但當(dāng)均衡器抽頭系數(shù)接近最優(yōu)值時,抽頭系數(shù)將在最優(yōu)值附近一個較小的范圍內(nèi)來回抖動而無法進一步收斂,因而穩(wěn)態(tài)剩余誤差較小。恒模算法采用固定步長,算法在收斂速度和收斂精度方面對調(diào)整步長的要求是相矛盾的,因而制約了恒模算法收斂性能的進一步提高。解決這一矛盾的最好方法是將自適應(yīng)均衡中的變步長思想應(yīng)用于恒模算法。在算法收斂期加大步長,提
42、高收斂速度。算法收斂后降低步長,提高收斂精度。目前,變步長自適應(yīng)均衡算法的主要研究成果有,用 MSE 作為控制步長變化的參量、用剩余誤差的非線性變換作為控制步長變化的參量、用剩余誤差的自相關(guān)函數(shù)作為控制步長變化的參量、用剩余誤差的峰度作為控制步長變化的參量、用剩余誤差和均衡器輸入信號的互相關(guān)作為控制步長變化的參量,用梯度自適應(yīng)變步長的方法來控制步長的變化,還有用誤差信號的范數(shù)來控制步長的變化。后續(xù)章節(jié)將研究將變步長思想應(yīng)用于恒模算法,來克服恒模算法采用固定步長所存在的缺陷,提高恒模算法的收斂性能。3 基于剩余誤差的變步長恒模盲均衡算法將變步長思想應(yīng)用于恒模算法就是在算法收斂初期加大步長,以加快
43、收斂速度,當(dāng)算法收斂后,減小步長,以減小穩(wěn)態(tài)剩余誤差。在本章中,提出了基于剩余誤差的變步長恒模盲均衡算法,分析了剩余誤差的變化規(guī)律,指出將剩余誤差直接用于步長控制的缺乏之處,提出將剩余誤差的一種變換 MSE、作為控制步長的參量,形成一種基于剩余誤差的變步長恒模盲均衡算法,并通過計算機仿真實驗驗證了改良算法的收斂性能。3.1 恒模算法中剩余誤差的分析假設(shè)均衡器的時變最優(yōu)權(quán)矢量為: (3-1)1( )( )( )TNnw n ,.,wnW那么有: (3-2)( )( ) ( )( )Tx nnnnwY式中為零均值,獨立同分布的干擾信號。( )n將式(3-2)代入剩余誤差的表達式,可得:=-=( )
44、e n( )x n( )x n( ) ( )( ) ( )( )TnnnnnTWYWY= ( )( )( )( )TnnnnW-WY = (3-3)( ) ( )( )nnnTVY式中,稱為權(quán)誤差矢量。( )nV在算法收斂過程中,由于逐漸向靠近,所以權(quán)誤差矢量呈逐漸減( )nW( )nW( )nV小趨勢,最后趨于零,所以式 (3-3)中第一項也逐漸減小,最后趨于零。第二項為干擾信號。以上理論分析說明,剩余誤差信號( )e n的變化趨勢是由大到小,在算法開始時,均衡器權(quán)矢量距離最優(yōu)權(quán)矢量最遠,剩余誤差最大,在算法收斂過程中剩( )nW( )nW余誤差逐漸減小,算法收斂后到達最小。從以上分析可見,
45、剩余誤差的變換規(guī)律與變步長思想對步長變化規(guī)律的要求根本一致,但將剩余誤差直接用于步長控制存在一些缺陷。首先變步長算法在收斂之前應(yīng)一直采用較大步長才能真正起到加快收斂速度的作用,用剩余誤差作步長控制往往是開始時步長較大,收斂速度也快,但剩余誤差迅速下降,步長隨之很快變小,收斂速度變慢,總體來看收斂速度得不到提高。其次,從式(3-3)可以看到剩余誤差對干擾信號敏感,尤其是算法收斂后,如果信道中有突發(fā)的強干擾信號時,會很大,隨之( )e n產(chǎn)生的大步長會引起誤調(diào),嚴(yán)重時可能會使算法發(fā)散。為更適合于步長控制,本章提出將剩余誤差進行適當(dāng)變換后,再來控制步長的變化。3.2 基于 MSE 的變步長恒模盲均衡
46、算法MSE 的含義為=E=E,是剩余誤差平方的期望值,MSE( )n2( )e n2 ( )( ) x nx n 本小節(jié)分析了用 MSE 來控制步長的合理性,提出了基于 MSE 的變步長恒模盲均衡算法。3 基于 MSE 的變步長恒模盲均衡算法的表達形式參照圖 2-1 盲均衡系統(tǒng)的原理框圖可知,均衡器的輸入為:= (3-4)y( )n( )* ( )h nx n( )n n( ) ()( )iih n x nin n均衡器的輸出為:= (3-5)( )x n( )* ( )w ny n( )* ()iiw ny ni( ) ( )TnnWY改良算法中抽頭系數(shù)的迭代采用下式: (3-6)22(1)
47、( )( )( )( )*nnx n Rx nnW=WY|式中, 為可變步長,其參數(shù)變化由下式來控制。 ( )n=aE ( )naMSE( )n( )en2 =aE (3-7)2 ( )( ) x nx n 公式 (3-4) (3-7)就構(gòu)成了基于 MSE 的變步長恒模盲均衡算法。在實際應(yīng)用中,得到的方法是先對取平方,然后使之通過長度為 L 的MSE( )n( )e n移動矩形窗,再取平均來得到其估計值。a 為比例因子,用于控制步長的取值范 ( )n圍。3 算法性能分析(1) 步長變化特性分析將式 (3-3)代入式 (3-7)得:=aE ( )n2( )en=aE+2( ) ( )( )( )
48、nnnnTTVYYV+2( )n( )n( ) ( )nnTVY =aE+aE (3-8)( ) ( )( )( )nnnnTTVYYV2( )n在算法收斂過程中,由于逐漸向靠近,所以權(quán)誤差矢量呈逐漸減小的( )nW( )nW趨勢,最后趨于零,所以式(3-8)中第一項也是逐漸減小,最后趨于零。第二項為噪聲的平均功率。以上理論分析證實,步長因子隨著算法的收斂逐漸減小。 ( )n用 MSE 控制步長的優(yōu)勢在于,如果信道中有突發(fā)強干擾信號時,變大,但由( )e n于經(jīng)過加窗取平均,那么可以削弱干擾信號的影響,使得 MSE 變化不大,這樣可以減小因步長變化太大而引起的誤調(diào)。 (2) 比例因子 a 確實
49、定原那么為了確保算法收斂,還必須合理選擇式 (3-7)中的參數(shù) a. a 用于控制的取值 ( )n范圍,使得的最大值小于步長上界。由下式確定. ( )nmaxmax=2/3tr(R) (3-9)max式中,R 為均衡器輸入信號的自相關(guān)矩陣,tr(R)為 R 的跡。a 具體取值應(yīng)滿足上述限定條件,并在仿真實驗中調(diào)整確定。(3) 矩形窗函數(shù)的長度 L 對算法性能的影響在盲均衡算法的實際應(yīng)用中,信道可能是時變的甚至是突變的,還可能隨機產(chǎn)生強噪聲。在設(shè)計算法時必須考慮這些因素。信道的突變和強噪聲都會引起剩余誤差急劇增加,由此而引起的均方誤差變化大小取決于矩形窗函數(shù)的長度 L。由于均方誤差的估計值是由
50、L 項剩余誤差的平方再平均得到的,所以 L 越大引起的均方誤差變化越小,步長變化也越小。因此,L 的選擇對算法的影響非常大,L 取值越小,步長對信道突變和突發(fā)噪聲越敏感,即對信道時變的跟蹤能力越強。但步長對突發(fā)噪聲敏感,就有可能對均衡器造成大的誤調(diào),二者是互相矛盾的。在選擇參數(shù) L 時,要根據(jù)實際應(yīng)用場合具體確定。在信道時變嚴(yán)重,而強噪聲干擾較少的環(huán)境下應(yīng)選擇較小的 L 值,以提高均衡器對信道時變的跟蹤能力;在信道比擬穩(wěn)定,而干擾噪聲較強的環(huán)境中應(yīng)選擇較大的 L 值,以減小強噪聲引起的誤調(diào);在信道時變嚴(yán)重,干擾噪聲也較強的環(huán)境下,只能折中處理。 3.3 基于 MSE 的變步長恒模恒模算法的 M
51、ATLAB 實現(xiàn)實驗一:輸入信號分別采用 4QAM 調(diào)制方式,信噪比為 20dB 波器階數(shù)為 11。信道采用典型 信道,仿真實驗運行總次數(shù)為 2000 次。典型 信道: (3-10)1234561(z)0.0050.0090.0240.8540.2180.0490.016Hzzzzzz01000200030004000500060000.050.40.450.50.55代 代 代 代MSE 代 代 代 代代 代 代 代(a)收斂曲線-1-0.500.51-1-0.8-0.6-0.4-0.60.81代 代代 代-1.5-1-0.500
52、.511.5-1.5-1-0.500.511.5代 代代 代(b) 4QAM 信號的星座圖 (c) 均衡器輸入星座圖-1.5-1-0.500.511.5-1.5-1-0.500.511.5代 代代 代 -1-0.500.51-1-0.500.51代 代代 代(d) CMA 均衡器輸出星座 (e) 改良 CMA 均衡器輸出星座圖圖 3-1 兩種算法仿真圖兩種算法仿真圖圖 3-1(a)給出了 4QAM 信號通過典型 信道后改良算法和恒模算法的收斂曲線. 圖 3-1(b)是 4QAM 信號的星座圖。圖 3-1(c)(e)給出了 4QAM 信號通過典型 信道后恒模算法和改良算法均衡前后的星座圖。從圖
53、3-1(a)中可以看出,4QAM 信號通過典型 信道時,改良算法均具有較快的收斂速度和較小的穩(wěn)態(tài)剩余誤差。從圖 3-1(b)(e)中可以看出,算法經(jīng)過均衡后改良算法的星座更加集中、清晰,即改良算法具有更小的穩(wěn)態(tài)剩余誤差和誤碼率。實驗二:普通信道輸入信號分別采用 4QAM 調(diào)制方式,信噪比為 20dB, 波器階數(shù)為 11。信道采用普通信道,仿真實驗運行總次數(shù)為 2000 次。普通信道:. (3-11)1232( )25Hzzzz 01000200030004000500060007000800090001000000.511.522.533.54代 代 代 代MSE 代 代
54、 代 代代 代 代 代(a)收斂曲線-1-0.500.51-1-0.8-0.6-0.4-0.60.81代 代代 代 -2-1012-2-1.5-1-0.500.511.52代 代代 代(b)4QAM 信號的星座圖 (c)均衡器輸入星座圖-2-1012-2-1.5-1-0.500.511.52代 代代 代-2-1012-2-1.5-1-0.500.511.52代 代代 代(d) CMA均衡器輸出星座 (e) 改良 CMA 均衡器輸出星座圖 3-2 兩種算法仿真圖圖 3-2 (a)給 4QAM 信號通過普通信道后改良算法和恒模算法的收斂曲線。圖 3-2(b)給出 4QAM 信號
55、的星座圖。圖 3-2(c)(e)給出了 4QAM 信號通過普通信道后改良算法和恒模算法均衡前后的星座圖。從圖 3-2(a)中可以看出,4QAM 信號通過普通信道時,改良算法具有較快的收斂速度和較小的穩(wěn)態(tài)剩余誤差。從圖 3-2(b)(e)中可以看出,信號經(jīng)過均衡后改良算法的星座更加集中、清晰,即改良算法具有更小的穩(wěn)態(tài)剩余誤差和誤碼率。由實驗一和實驗二得知在兩種不同信道下改良 CMA 算法收斂速度都明顯快于CMA 算法而且有較小的穩(wěn)態(tài)剩余誤差。由此可見改良 CMA 算法的性能要優(yōu)于 CMA算法。盲均衡優(yōu)于傳統(tǒng)自適應(yīng)均衡之處在于:不需要用訓(xùn)練序列,發(fā)信端無需任何改動,僅在接收端改變算法即可大幅度提高
56、通信系統(tǒng)可靠性,因此可以很好的運用于多點通信系統(tǒng)和播送系統(tǒng)中的均衡問題。此項技術(shù)的實際應(yīng)用,對于提高接收信號的質(zhì)量、保證信息的準(zhǔn)確可靠,具有十分重要的意義。本文介紹了 CMA 算法的特點,給出了 CMA 迭代算法的具體步驟。然后,采用 CMA 盲算法對自適應(yīng)濾波器進行均衡,并對 CMA 盲均衡算法的性能進行了研究并提出了一種基于 MSE 的變步長恒模算法。計算機仿真結(jié)果說明,盲均衡算法迭代步長的選取會影響到算法的收斂速度和穩(wěn)態(tài)誤差的大小,在具體選擇迭代步長時,在保證盲均衡算法收斂的范圍內(nèi),可根據(jù)實際需要在二者之間作出折中選擇;均衡器的階數(shù)在比擬高時,對盲均衡算法收斂性能的影響己經(jīng)非常小,因此,
57、對于收斂性能相當(dāng)?shù)木馄?,可以選擇其中階數(shù)較小的。還說明了,改良算法性能優(yōu)于恒模算法。另外,隨著信噪比的增加,CMA 盲均衡算法的收斂性能也相應(yīng)提高。結(jié)論盲均衡是一種新的自適應(yīng)均衡技術(shù),它不再需要參考輸入的訓(xùn)練序列來維持正常工作,僅依據(jù)接收序列本身的先驗信息來均衡信道特性。因此,在數(shù)據(jù)通信系統(tǒng)中不必發(fā)送訓(xùn)練序列,這樣就提高了信道效率。同時盲均衡技術(shù)還可以獲得更好的均衡性能。盲均衡技術(shù)優(yōu)越的性能使它受到更加廣泛的關(guān)注,并在許多領(lǐng)域中得到應(yīng)用。盲均衡技術(shù)可有效地應(yīng)用于數(shù)字通信、雷達、地震和圖像處理等系統(tǒng),現(xiàn)已成為數(shù)字通信領(lǐng)域中熱點研究的課題之一,相信未來的盲均衡技術(shù)將會得到更大的開展和更廣的應(yīng)用。
58、本文所做的主要工作有:(1) 分析了傳統(tǒng)CMA算法的收斂性能,并進行計算機仿真實驗加以驗證。傳統(tǒng)CMA算法采用固定步長造成收斂速度與收斂精度的矛盾,使其應(yīng)用受到很大的局限。為了提高CMA算法的收斂性能,將自適應(yīng)均衡算法中變步長的思想引入到CMA算法中。(2) 提出了一種基于MSE變換的CMA盲均衡算法。對改良算法進行了理論分析,研究了改良算法中參數(shù)的選取原那么,計算機仿真說明改良算法相對于CMA算法收斂性能有一定的提高。盲均衡是一項涉及許多知識領(lǐng)域的新興的綜合技術(shù)。特別是隨著通信技術(shù)的飛速開展,使盲均衡技術(shù)的應(yīng)用領(lǐng)域更加廣泛。本文關(guān)于盲均衡技術(shù)所做的研究工作是十分有限的,有關(guān)盲均衡技術(shù)需要做的
59、研究工作還很多。(1) Bussgang類盲均衡算法代價函數(shù)的非凸性,使之容易產(chǎn)生局部收斂。因此,Bussgang類盲均衡算法代價函數(shù)的凸性,是一研究的熱點。(2) 可以將更加先進的數(shù)學(xué)理論方法引入到盲均衡技術(shù)的研究中,提高盲均衡算法的性能。(3) 對有盲均衡技術(shù)的理論知識加以實現(xiàn)、應(yīng)用。由于作者的知識水平有限,文中還存在許多缺乏的地方,敬請各位老師批評指正,提出珍貴意見。 參考文獻1M.西安:西安電子科技大學(xué)出版社,20042周炯槃,龐沁華,續(xù)大我,楊鴻文.通信原理(第三版)M.北京:北京郵電大學(xué)出版社,2021.8:148-156.3高鑫.無線通信系統(tǒng)中 Bussgang 族盲均衡算法的研
60、究D.大連,大連海事大學(xué)通信與信息系統(tǒng)專業(yè),20074郭麗華.自適應(yīng)盲均衡算法在通信系統(tǒng)中應(yīng)用的研究D.哈爾濱,哈爾濱工程大學(xué)信號與信息處理專業(yè),20035張雄.基于 Bussgang 技術(shù)盲均衡算法的研究D.太原,太原理工大學(xué)電路與系統(tǒng)專業(yè),20036劉術(shù)平.恒模算法及其在盲均衡中的應(yīng)用D.南京,南京郵電大學(xué)通信與信息系統(tǒng)專業(yè),20067郭曉宇.改良型恒模盲均衡算法的研究D.太原,太原理工大學(xué)電路與系統(tǒng)專業(yè),20058丁志高.常模量算法(CMA)及在通信信道均衡中的研究 D.南京,東南大學(xué)信號與信息處理專業(yè),2004 9趙寶峰.變步長盲均衡算法的研究D.太原,太原理工大學(xué)電路與系統(tǒng)專業(yè),20
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 別墅室內(nèi)石材合同范本
- 保密設(shè)備合同范本
- 分時度假 合同范本
- 保險增值服務(wù)合同范本
- 第15課 現(xiàn)代醫(yī)療衛(wèi)生體系與社會生活 教學(xué)設(shè)計-2023-2024學(xué)年統(tǒng)編版(2019)高二歷史選擇性必修2 經(jīng)濟與社會生活
- 勞動合同范本txt
- 2024年招商銀行鄭州分行招聘考試真題
- 二手電線買賣合同范本
- 2024年銀川市永寧三沙源上游學(xué)校招聘筆試真題
- 光維護分包合同范本
- GB/T 6728-2017結(jié)構(gòu)用冷彎空心型鋼
- GB/T 6539-1997航空燃料與餾分燃料電導(dǎo)率測定法
- GB/T 28253-2012擠壓絲錐
- GB/T 27689-2011無動力類游樂設(shè)施兒童滑梯
- 普通話教程教學(xué)課件第八單元詞匯和語法的規(guī)范與辨正
- 康復(fù)治療技術(shù)概論
- 教學(xué)課件:《連鎖門店運營管理》(第二版)
- 高速綜合檢測列車軌道檢測系統(tǒng)課件
- 如何做一名合格的項目經(jīng)理 課件
- 抖音開店品牌授權(quán)模板
- 大學(xué)生必知的自然科學(xué)知識考試題庫(300題)
評論
0/150
提交評論