版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、人工智能Artificial Intelligence;簡(jiǎn)稱AI人工智能誕生52年1956-20081 11月16日,中國(guó)科協(xié)成立50周年新聞發(fā)布會(huì)在北京召開。在新聞發(fā)布會(huì)上,“五個(gè)10”系列評(píng)選活動(dòng),即10位傳播科技的優(yōu)秀人物、10部公眾喜愛(ài)的科普作品、10個(gè)公眾關(guān)注的科技問(wèn)題、10個(gè)影響中國(guó)的科技事件、10項(xiàng)引領(lǐng)未來(lái)的科學(xué)技術(shù)評(píng)選結(jié)果揭曉 10項(xiàng)引領(lǐng)未來(lái)的科學(xué)技術(shù)是: 1基因修飾技術(shù) 2未來(lái)家庭機(jī)器人 3新型電池 4人工智能技術(shù) 5超高速交通工具 6干細(xì)胞技術(shù) 7光電信息技術(shù) 8可服用診療芯片 9感冒疫苗 10無(wú)線能量傳輸技術(shù)人 工 智 能一個(gè)引領(lǐng)未來(lái)的科學(xué)技術(shù)2人工智能的基本內(nèi)容人工智能
2、基本概念、方法和技術(shù) 基本技術(shù):知識(shí)表示、推理、搜索、規(guī)劃人工智能的主要研究、應(yīng)用領(lǐng)域 機(jī)器感知:機(jī)器視覺(jué);機(jī)器聽覺(jué);自然語(yǔ)言理解;機(jī)器翻譯 機(jī)器思維:機(jī)器推理 機(jī)器學(xué)習(xí):符號(hào)學(xué)習(xí);連接學(xué)習(xí) 機(jī)器行為:智能控制 智能機(jī)器:智能機(jī)器人;機(jī)器智能 智能應(yīng)用:博弈;自動(dòng)定理證明;自動(dòng)程序設(shè)計(jì) 專家系統(tǒng);智能決策;智能檢索;智能CAD;智能CAI 智能交通;智能電力;智能產(chǎn)品;智能建筑等 人工智能新技術(shù) 計(jì)算智能:神經(jīng)計(jì)算;模糊計(jì)算;進(jìn)化計(jì)算;自然計(jì)算 人工生命:人工腦;細(xì)胞自動(dòng)機(jī) 分布智能:多Agent , 群體智能 數(shù)據(jù)挖掘:知識(shí)發(fā)現(xiàn);數(shù)據(jù)挖掘一個(gè)新興的“智能科學(xué)與技術(shù)學(xué)科”正在興起3本課程的主要
3、內(nèi)容第1章:人工智能概述 定義,產(chǎn)生過(guò)程,基本內(nèi)容,不同學(xué)派,研究和應(yīng)用領(lǐng)域,近期發(fā)展分析第2章:知識(shí)表示方法 謂詞,產(chǎn)生式,語(yǔ)義網(wǎng)絡(luò)、框架等第3章:確定性推理 自然演繹推理,歸結(jié)推理,基于規(guī)則的演繹推理第4章:搜索策略 狀態(tài)空間的盲目搜索,狀態(tài)空間的啟發(fā)式搜索第5章:計(jì)算智能 神經(jīng)計(jì)算,進(jìn)化計(jì)算, 模糊計(jì)算第6章:非確定性推理 確定性理論,主觀Bayese方法,證據(jù)理論,模糊推理第7章:機(jī)器學(xué)習(xí) 符號(hào)學(xué)習(xí),連接學(xué)習(xí)第8章:自然語(yǔ)言理解 詞法分析,句法分析,語(yǔ)義分析第9章: 分布智能 多Agent技術(shù),移動(dòng)Agent技術(shù)第10章:高級(jí)專家系統(tǒng) 模糊專家系統(tǒng),神經(jīng)網(wǎng)絡(luò)專家系統(tǒng),基于Web的專家系
4、統(tǒng),分布式和協(xié)同式專家系統(tǒng)4物質(zhì)、能量、信息、知識(shí)和智能構(gòu)成宇宙的三大要素: 三大要素:物質(zhì)、能量與信息 信息:是物質(zhì)和能量的表現(xiàn)形式,是以物質(zhì)和能量為載體的客觀存在三大要素與智能 人類的智能:物質(zhì)(碳)+能量(生物電)(生物)信息 人造的智能:物質(zhì)(硅)+能量(物理電)(電子)信息 信息、知識(shí)和智能 信息:是由數(shù)據(jù)表達(dá)的客觀事實(shí) 知識(shí):是由智力對(duì)信息進(jìn)行加工后所形成的對(duì)客觀世界規(guī)律性的認(rèn)識(shí) 智能:是指人類在認(rèn)識(shí)客觀世界中,由思維過(guò)程和腦力活動(dòng)所表現(xiàn)出的綜合能力三者之間的關(guān)系 信息:是形成知識(shí)的原料,是智能的加工對(duì)象 知識(shí):是信息的關(guān)聯(lián),是由智能加工后的產(chǎn)品 智能:是信息到知識(shí)的一個(gè)加工器產(chǎn)業(yè)
5、革命和信息革命及其意義 產(chǎn)業(yè)革命:是物質(zhì)與能量領(lǐng)域的革命,放大了人的體能 信息革命:是信息與智能領(lǐng)域的革命,需要放大人的智能5第1章 人工智能概述1.1 AI的定義及其研究目標(biāo) AI的定義 AI的研究目標(biāo)1.2 AI的產(chǎn)生與發(fā)展1.3 AI研究的基本內(nèi)容1.4 AI研究的不同學(xué)派1.5 AI的主要研究和應(yīng)用領(lǐng)域1.6 AI近期發(fā)展分析1.7 我國(guó)智能科學(xué)技術(shù)教育體系61.1.1 AI的定義總述Ai的形式化定義 目前還沒(méi)有AI的一般解釋 人工智能就是用人工的方法在機(jī)器(計(jì)算機(jī))上實(shí)現(xiàn)的智能,或稱機(jī)器智能AI無(wú)形式化定義的理由 人工智能的嚴(yán)格定義依賴于對(duì)智能的定義 即要定義人工智能,首先應(yīng)該定義智
6、能 但智能本身也還無(wú)嚴(yán)格定義如何討論AI的定義 應(yīng)先對(duì)人類的自然智能進(jìn)行討論7自然智能 指人類和一些動(dòng)物所具有的智力和行為能力人類的自然智能(簡(jiǎn)稱智能) 指人類在認(rèn)識(shí)客觀世界中,由思維過(guò)程和腦力活動(dòng)所表現(xiàn)出的綜合能力。人類大腦是如何實(shí)現(xiàn)智能的 兩大難題之一:宇宙起源、人腦奧秘 對(duì)人腦奧秘知之甚少對(duì)人腦奧秘知道什么 結(jié)構(gòu):1011-12 量級(jí)的神經(jīng)元,分布并行 功能:記憶、思維、觀察、分析 等對(duì)智能的嚴(yán)格定義 有待于人腦奧秘的揭示,進(jìn)一步認(rèn)識(shí)1.1.1 AI的定義智能(自然智能)81.1.1 AI的定義認(rèn)識(shí)智能的觀點(diǎn)思維理論 智能來(lái)源于思維活動(dòng),智能的核心是思維,人的一切知識(shí)都是思維的產(chǎn)物??赏?/p>
7、通過(guò)對(duì)思維規(guī)律和思維方法的研究,來(lái)揭示智能的本質(zhì)。知識(shí)閾值理論 智能取決于知識(shí)的數(shù)量及其可運(yùn)用程度。一個(gè)系統(tǒng)所具有的可運(yùn)用知識(shí)越多,其智能就會(huì)越高。進(jìn)化理論 是美國(guó)MIT的Brooks在對(duì)人造機(jī)器蟲研究的基礎(chǔ)上提出來(lái)的。智能取決于感知和行為,取決于對(duì)外界復(fù)雜環(huán)境的適應(yīng),智能不需要知識(shí)、不需要表示、不需要推理,智能可由逐步進(jìn)化來(lái)實(shí)現(xiàn)。不一致,從層次結(jié)構(gòu)再認(rèn)識(shí)91.1.1 AI的定義智能的層次結(jié)構(gòu)高層智能 以大腦皮層(抑制中樞)為主,主要完成記憶、思維等活動(dòng)。中層智能 以丘腦(感覺(jué)中樞)為主,主要完成感知活動(dòng)。低層智能 以小腦、脊髓為主,主要完成動(dòng)作反應(yīng)活動(dòng)。不同觀點(diǎn)在層次結(jié)構(gòu)中的對(duì)應(yīng)關(guān)系 思維理
8、論 知識(shí)閾值理論 進(jìn)化理論 中層智能和低層智能包含哪些能力?高層智能101.1.1 AI的定義智能包含的能力(1/2)感知能力 通過(guò)感知器官感知外界的能力。是人類獲得外界信息的基本途徑,其處理方式有以下兩種: 感知-動(dòng)作方式:對(duì)簡(jiǎn)單、緊急信息 感知-思維-動(dòng)作方式:對(duì)復(fù)雜信息 記憶和思維能力 記憶:對(duì)感知到的外界信息和由思維產(chǎn)生的內(nèi)部知識(shí)的存儲(chǔ)過(guò)程 思維:對(duì)已存儲(chǔ)信息或知識(shí)的本質(zhì)屬性、內(nèi)部知識(shí)的認(rèn)識(shí)過(guò)程 思維方式: 抽象思維(邏輯思維):根據(jù)邏輯規(guī)則對(duì)信息和知識(shí)進(jìn)行處理的理性思維方式。例如,邏輯推理等 形象思維(直感思維):基于形象概念,根據(jù)感性形象認(rèn)識(shí)材料對(duì)客觀現(xiàn)象進(jìn)行處理的一種思維方式。例
9、如,圖像、景物識(shí)別等 靈感思維(頓悟思維):是一種顯意識(shí)和潛意識(shí)相互作用的思維方式。例如,因靈感而頓時(shí)開竅111.1.1 AI的定義智能包含的能力(2/2)學(xué)習(xí)和自適應(yīng)能力 學(xué)習(xí):是一個(gè)具有特定目的的知識(shí)獲取過(guò)程 是人的一種本能。不同人的學(xué)習(xí)方法、能力不同 自適應(yīng):是一種通過(guò)自我調(diào)節(jié)適應(yīng)外界環(huán)境的過(guò)程 是人的一種本能。不同人的適應(yīng)能力不同行為能力 含義:是人們對(duì)感知到的外界信息作出動(dòng)作反應(yīng)的能力 信息來(lái)源:由感知直接獲得的外界信息 經(jīng)過(guò)思維加工后的信息 實(shí)現(xiàn)過(guò)程:通過(guò)脊髓來(lái)控制 由語(yǔ)言、表情、體姿等來(lái)實(shí)現(xiàn) 121.1.1 AI的定義何謂人工智能(1/2)綜合各種不同觀點(diǎn),可從能力和學(xué)科兩個(gè)方面
10、討論能力方面 人工智能就是用人工的方法在機(jī)器(計(jì)算機(jī))上實(shí)現(xiàn)的智能,或稱機(jī)器智能學(xué)科方面 是一門研究如何構(gòu)造智能機(jī)器或智能系統(tǒng),以模擬、延伸和擴(kuò)展人類智能的學(xué)科Turing測(cè)試 如下圖所示。能分辨出人和機(jī)器的概率小于50%Turing測(cè)試存在的問(wèn)題 僅反映了結(jié)果的比較,沒(méi)涉及思維過(guò)程 沒(méi)指出是什么人131.1.1 AI的定義何謂人工智能(2/2)測(cè)試主持人被測(cè)機(jī)器被測(cè)人小于50%?Turing測(cè)試141.1.2 人工智能的研究目標(biāo)遠(yuǎn)期目標(biāo) 揭示人類智能的根本機(jī)理,用智能機(jī)器去模擬、延伸和擴(kuò)展人類的智能 涉及到腦科學(xué)、認(rèn)知科學(xué)、計(jì)算機(jī)科學(xué)、系統(tǒng)科學(xué)、控制論等多種學(xué)科,并依賴于它們的共同發(fā)展近期目
11、標(biāo) 研究如何使現(xiàn)有的計(jì)算機(jī)更聰明,即使它能夠運(yùn)用知識(shí)去處理問(wèn)題,能夠模擬人類的智能行為。相互關(guān)系 遠(yuǎn)期目標(biāo)為近期目標(biāo)指明了方向 近期目標(biāo)則為遠(yuǎn)期目標(biāo)奠定了理論和技術(shù)基礎(chǔ)15第1章 人工智能概述1.1 AI的定義及其研究目標(biāo)1.2 AI的產(chǎn)生與發(fā)展 孕育期(1956年以前) 形成期(1956-1970年) 知識(shí)應(yīng)用期(1970- 20世紀(jì)80年代末) 從學(xué)派分離走向綜合(20世紀(jì)80年代末到本世紀(jì)初) 智能科學(xué)技術(shù)學(xué)科的興起(本世紀(jì)初以來(lái))1.3 AI研究的基本內(nèi)容1.4 AI研究的不同學(xué)派1.5 AI的主要研究和應(yīng)用領(lǐng)域1.6 AI近期發(fā)展分析1.7 我國(guó)智能科學(xué)技術(shù)教育體系161.2.1 孕
12、育期(1956年以前) 自遠(yuǎn)古以來(lái),人類就有用機(jī)器代替人們腦力勞動(dòng)的的幻想:公元前900多年我國(guó)有歌舞機(jī)器人流傳的記載。 亞里斯多德(公元前384322):古希臘偉大的哲學(xué)家和思想家,創(chuàng)立了演繹法。 萊布尼茨(16461716):德國(guó)數(shù)學(xué)家和哲學(xué)家把形式邏輯符號(hào)化,奠定了數(shù)理邏輯的基礎(chǔ) 圖靈(19121954):英國(guó)數(shù)學(xué)家,1936年創(chuàng)立了自動(dòng)機(jī)理論,自動(dòng)機(jī)理論亦稱圖靈機(jī),是一個(gè)理論計(jì)算機(jī)模型。 莫克利(19071980):美國(guó)數(shù)學(xué)家、電子數(shù)字計(jì)算機(jī)的先驅(qū),他與??颂?J.P.Eckert)合作,1946年研制成功了世界上第一臺(tái)通用電子計(jì)算機(jī)ENIAC 麥克洛奇和皮茲:美國(guó)神經(jīng)生理學(xué)家,于19
13、43年建成了第一個(gè)神經(jīng)網(wǎng)絡(luò)模型(MP模型)。 維納18741956) :美國(guó)著名數(shù)學(xué)家、控制論創(chuàng)始人。1948年創(chuàng)立了控制論??刂普撓蛉斯ぶ悄艿臐B透,形成了行為主義學(xué)派。 圖靈又于1950年,發(fā)表題為計(jì)算機(jī)能思維嗎?的著名論文,明確提出了“機(jī)器能思維”的觀點(diǎn)。 這些,都為人工智能的誕生準(zhǔn)備了必要的思想、理論和物質(zhì)技術(shù)條件。171.2.2 形成期(1956-1970年)誕生AI誕生于一次歷史性的聚會(huì)時(shí)間:1956年夏季地點(diǎn):達(dá)特莫斯 (Dartmouth) 大學(xué)目的:為使計(jì)算機(jī)變得更“聰明” ,或者說(shuō)使計(jì)算機(jī)具有智能發(fā)起人: 麥卡錫(J.McCarthy) ,Dartmouth的年輕數(shù)學(xué)家、計(jì)算
14、機(jī)專家,后為MIT教授 明斯基(M.L.Minsky),哈佛大學(xué)數(shù)學(xué)家、神經(jīng)學(xué)家,后為MIT教授 洛切斯特(N.Lochester), IBM公司信息中心負(fù)責(zé)人 香農(nóng)(C.E.Shannon),貝爾實(shí)驗(yàn)室信息部數(shù)學(xué)研究員參加人: 莫爾(T.more)、塞繆爾(A.L.Samuel), IBM公司 塞爾夫里奇(O.Selfridge)、索羅蒙夫(R.Solomonff) , MIT 紐厄爾(A.Newell),蘭德(RAND)公司 西蒙(H.A.Simon),卡內(nèi)基(Carnagie)工科大學(xué)會(huì)議結(jié)果: 由麥卡錫提議正式采用了“Artificial Intelligence”這一術(shù)語(yǔ)181.2.
15、2 形成期(1956-1970年)早期研究 心理學(xué)小組:1957年,紐厄爾、肖(J.Shaw)和西蒙等人的心理學(xué)小組研制了稱為邏輯理論機(jī)(簡(jiǎn)稱LT)的數(shù)學(xué)定理證明程序。 1960年研制了通用問(wèn)題求解程序。該程序當(dāng)時(shí)可解決11種類型的問(wèn)題,如不定積分、三角函數(shù)、代數(shù)方程、猴子摘香蕉、河內(nèi)梵塔、人羊過(guò)河等。 IBM工程小組:1956年,塞繆爾在IBM704計(jì)算機(jī)上研制成功了具有自學(xué)習(xí)、自組織和自適應(yīng)能力的西洋跳棋程序。這個(gè)程序可以從棋譜中學(xué)習(xí),也可以在下棋過(guò)程中積累經(jīng)驗(yàn)、提高棋藝。通過(guò)不斷學(xué)習(xí),該程序1959年擊敗了塞繆爾本人,1962年又擊敗了一個(gè)州的冠軍。 MIT小組:1958年,麥卡西建立了
16、行動(dòng)規(guī)劃咨詢系統(tǒng)。 1960年,麥卡西又研制了人工智能語(yǔ)言LISP。 1961年,明斯基發(fā)表了“走向人工智能的步驟”的論文,推動(dòng)了人工智能的發(fā)展。 其他方面:1965年,魯賓遜(J.A.Robinson)提出了歸結(jié)(消解)原理。 1965年,費(fèi)根鮑姆開始研究化學(xué)專家系統(tǒng)DENDRAL。191.2.3 知識(shí)應(yīng)用期(19711980)挫折和教訓(xùn)失敗的預(yù)言: 60年代初,西蒙預(yù)言:10年內(nèi)計(jì)算機(jī)將成為世界冠軍、將證明一個(gè)未發(fā)現(xiàn)的數(shù)學(xué)定理、將能譜寫出具有優(yōu)秀作曲家水平的樂(lè)曲、大多數(shù)心理學(xué)理論將在計(jì)算機(jī)上形成。 挫折和教訓(xùn) 在博弈方面,塞繆爾的下棋程序在與世界冠軍對(duì)弈時(shí),5局?jǐn)×?局。 在定理證明方面,
17、發(fā)現(xiàn)魯賓遜歸結(jié)法的能力有限。當(dāng)用歸結(jié)原理證明兩個(gè)連續(xù)函數(shù)之和還是連續(xù)函數(shù)時(shí),推了10萬(wàn)步也沒(méi)證出結(jié)果。 在問(wèn)題求解方面,對(duì)于不良結(jié)構(gòu),會(huì)產(chǎn)生組合爆炸問(wèn)題。 在機(jī)器翻譯方面,發(fā)現(xiàn)并不那么簡(jiǎn)單,甚至?xí)[出笑話。例如,把“心有余而力不足”的英語(yǔ)句子翻譯成俄語(yǔ),再 翻譯回來(lái)時(shí)竟變成了“酒是好的,肉變質(zhì)了” 在神經(jīng)生理學(xué)方面,研究發(fā)現(xiàn)人腦有1011-12以上的神經(jīng)元,在現(xiàn)有技術(shù)條件下用機(jī)器從結(jié)構(gòu)上模擬人腦是根本不可能的。 在其它方面,人工智能也遇到了不少問(wèn)題。在英國(guó),劍橋大學(xué)的詹姆教授指責(zé)“人工智能研究不是騙局,也是庸人自擾” 。從此,形勢(shì)急轉(zhuǎn)直下,在全世界范圍內(nèi)人工智能研究陷入困境、落入低谷。 201
18、.2.3 知識(shí)應(yīng)用期(19711980)以知識(shí)為中心的研究以知識(shí)為中心的研究: 專家系統(tǒng)實(shí)現(xiàn)了人工智能從理論研究走向?qū)嶋H應(yīng)用,從一般思維規(guī)律探討走向?qū)iT知識(shí)運(yùn)用的重大突破,是AI發(fā)展史上的一次重要轉(zhuǎn)折。 1972年,費(fèi)根鮑姆開始研究MYCIN專家系統(tǒng),并于1976年研制成功。從應(yīng)用角度看,它能協(xié)助內(nèi)科醫(yī)生診斷細(xì)菌感染疾病,并提供最佳處方。從技術(shù)角度看,他解決了知識(shí)表示、不精確推理、搜索策略、人機(jī)聯(lián)系、知識(shí)獲取及專家系統(tǒng)基本結(jié)構(gòu)等一系列重大技術(shù)問(wèn)題。 1976年,斯坦福大學(xué)的杜達(dá)(R.D.Duda)等人開始研制地質(zhì)勘探專家系統(tǒng)PROSPECTOR 這一時(shí)期,與專家系統(tǒng)同時(shí)發(fā)展的重要領(lǐng)域還有計(jì)算機(jī)
19、視覺(jué)和機(jī)器人,自然語(yǔ)言理解與機(jī)器翻譯等。 新的問(wèn)題: 專家系統(tǒng)本身所存在的應(yīng)用領(lǐng)域狹窄、缺乏常識(shí)性知識(shí)、知識(shí)獲取困難、推理方法單一、沒(méi)有分布式功能、不能訪問(wèn)現(xiàn)存數(shù)據(jù)庫(kù)等問(wèn)題被逐漸暴露出來(lái)。 211.2.4 從學(xué)派分立到綜合(20世紀(jì)80年代到本世紀(jì)初)人工智能研究形成了三大學(xué)派: 隨著人工神經(jīng)網(wǎng)絡(luò)的再度興起和布魯克(R.A.Brooks)的機(jī)器蟲的出現(xiàn),人工智能研究形成了符號(hào)主義、連接主義和行為主義三大學(xué)派。 符號(hào)主義學(xué)派 是指基于符號(hào)運(yùn)算的人工智能學(xué)派,他們認(rèn)為知識(shí)可以用符號(hào)來(lái)表示,認(rèn)知可以通過(guò)符號(hào)運(yùn)算來(lái)實(shí)現(xiàn)。例如,專家系統(tǒng)等。連接主義學(xué)派 是指神經(jīng)網(wǎng)絡(luò)學(xué)派,在神經(jīng)網(wǎng)絡(luò)方面,繼魯梅爾哈特研制
20、出BP網(wǎng)絡(luò)之后,1987年,首屆國(guó)際人工神經(jīng)網(wǎng)絡(luò)學(xué)術(shù)大會(huì)在美國(guó)的圣迭戈(San-Diego)舉行,掀起了人工神經(jīng)網(wǎng)絡(luò)的第二次高潮。之后,隨著模糊邏輯和進(jìn)化計(jì)算的逐步成熟,又形成了“計(jì)算智能”這個(gè)統(tǒng)一的學(xué)科范疇。 行為主義學(xué)派 是指進(jìn)化主義學(xué)派,在行為模擬方面,麻省理工學(xué)院的布魯克教授1991年研制成功了能在未知的動(dòng)態(tài)環(huán)境中漫游的有6條腿的機(jī)器蟲。三大學(xué)派的綜合集成 隨著研究和應(yīng)用的深入,人們又逐步認(rèn)識(shí)到,三個(gè)學(xué)派各有所長(zhǎng),各有所短,應(yīng)相互結(jié)合、取長(zhǎng)補(bǔ)短,綜合集成。 221.2.5 智能科學(xué)技術(shù)的興起(本世紀(jì)初以來(lái)) 目前,一個(gè)以人工智能為核心,以自然智能、人工智能、集成智能為一體的新的智能科學(xué)
21、技術(shù)學(xué)科正在逐步興起,并引起了人們的極大關(guān)注。 該學(xué)科研究的主要特征包括以下幾個(gè)方面: (1) 由對(duì)人工智能的單一研究走向以自然智能、人工智能、集成智能為一體的協(xié)同研究; (2) 由人工智能學(xué)科的獨(dú)立研究走向重視與腦科學(xué)、認(rèn)知科學(xué)、等學(xué)科的交叉研究; (3) 由多個(gè)不同學(xué)派的獨(dú)立研究走向多學(xué)派的綜合研究; (4) 由對(duì)個(gè)體、集中智能的研究走向?qū)θ后w、分布智能的研究。 23AI成功的標(biāo)志:IBM的“深藍(lán)”和“小深”“深藍(lán)”對(duì)弈情況: 時(shí)間:北京時(shí)間1997年5月12日凌晨4點(diǎn)50分 對(duì)手:IBM的“深藍(lán)”超級(jí)計(jì)算機(jī) 國(guó)際象棋世界冠軍卡斯派羅夫 結(jié)局:2勝1負(fù)3平,總比分3.5 : 2.5, “深
22、藍(lán)”獲勝技術(shù)指標(biāo) 32個(gè)CPU,每個(gè)CPU有12個(gè)協(xié)處理器,每個(gè)CPU有256M內(nèi)存,每個(gè)CPU的處理速度為200萬(wàn)步/秒。 對(duì)弈的實(shí)質(zhì)機(jī)器智能與人類智能的較量“小深”對(duì)弈情況: 時(shí)間:北京時(shí)間203年1月26日至2月7日 對(duì)手:比“深藍(lán)”功能強(qiáng)大的“小深”超級(jí)計(jì)算機(jī) 國(guó)際象棋世界冠軍卡斯派羅夫 結(jié)局:1勝1負(fù)4平,平局啟示:計(jì)算機(jī)可以有智能;計(jì)算機(jī)要完全戰(zhàn)勝人類象棋大師并非易事。24第1章 人工智能概述1.1 AI的定義及其研究目標(biāo)1.2 AI的產(chǎn)生與發(fā)展1.3 AI研究的基本內(nèi)容 人工智能的學(xué)科位置 與腦科學(xué)和認(rèn)知科學(xué)的交叉研究 智能模擬的方法和技術(shù)研究1.4 AI研究的不同學(xué)派1.5 A
23、I的主要研究和應(yīng)用領(lǐng)域1.6 AI近期發(fā)展分析1.7 我國(guó)智能科學(xué)技術(shù)教育體系251.3.1 AI 的 學(xué) 科 位 置AI是一門新興的邊緣學(xué)科,是自然科學(xué)與社會(huì)科學(xué)的交叉學(xué)科AI的交叉包括:邏輯、思維、生理、心理、計(jì)算機(jī)、電子、語(yǔ)言、自動(dòng)化、光、聲等AI的核心是思維與智能,構(gòu)成了自己獨(dú)特的學(xué)科體系A(chǔ)I的基礎(chǔ)學(xué)科包括:數(shù)學(xué)(離散、模糊)、思維科學(xué)(認(rèn)知心理、邏輯思維學(xué)、形象思維學(xué))和計(jì)算機(jī)(硬件、軟件)等自然科學(xué)社會(huì)科學(xué)哲學(xué)數(shù)學(xué)交叉學(xué)科系統(tǒng)科學(xué)思維科學(xué)人體科學(xué)人工智能基礎(chǔ)學(xué)科指導(dǎo)學(xué)科261.3.2 與腦科學(xué)和認(rèn)知科學(xué)的交叉研究腦科學(xué) 腦科學(xué):又稱神經(jīng)科學(xué),其目的是要認(rèn)識(shí)腦、保護(hù)腦和創(chuàng)造腦。 美國(guó)
24、神經(jīng)科學(xué)學(xué)會(huì)的定義:神經(jīng)科學(xué)是為了了解神經(jīng)系統(tǒng)內(nèi)分子水平、細(xì)胞水平及細(xì)胞間的變化過(guò)程,以及這些過(guò)程在中樞的功能、控制系統(tǒng)內(nèi)的整合作用所進(jìn)行的研究。 腦的涵義:從狹義方面,腦是指中樞神經(jīng)系統(tǒng),有時(shí)特指大腦; 從廣義方面,腦可泛指整個(gè)神經(jīng)系統(tǒng)。人工智能是從廣義角度來(lái)理解腦科學(xué)的,因此它涵蓋了所有與認(rèn)識(shí)腦和神經(jīng)系統(tǒng)有關(guān)的研究。 人腦是自然界中最復(fù)雜、最高級(jí)的智能系統(tǒng):主要表現(xiàn)在人腦是由巨量神經(jīng)元經(jīng)其突觸的廣泛并行互聯(lián)所形成的一個(gè)巨復(fù)雜系統(tǒng)。 現(xiàn)代腦科學(xué)的基本問(wèn)題主要包括: (1) 揭示神經(jīng)元之間的連接形式,奠定行為的腦機(jī)制的結(jié)構(gòu)基礎(chǔ);(2) 闡明神經(jīng)活動(dòng)的基本過(guò)程,說(shuō)明在分子、細(xì)胞到行為等不同層次上
25、神經(jīng)信號(hào)的產(chǎn)生、傳遞、調(diào)制等基本過(guò)程;(3) 鑒別神經(jīng)元的特殊細(xì)胞生物學(xué)特性;(4) 認(rèn)識(shí)實(shí)現(xiàn)各種功能的神經(jīng)回路基礎(chǔ);(5) 解釋腦的高級(jí)功能機(jī)制等。 腦科學(xué)是人工智能的基礎(chǔ):研究的任何進(jìn)展,都將會(huì)對(duì)人工智能的研究起到積極的推動(dòng)作用,因此人工智能應(yīng)該加強(qiáng)與腦科學(xué)的交叉研究,以及人類智能與機(jī)器智能的集成研究。271.3.2與腦科學(xué)和認(rèn)知科學(xué)的交叉研究認(rèn)知科學(xué) 認(rèn)知:可一般地認(rèn)為是和情感、動(dòng)機(jī)、意志相對(duì)應(yīng)的理智或認(rèn)識(shí)過(guò)程,或者是為了一定的目的,在一定的心理結(jié)構(gòu)中進(jìn)行的信息加工過(guò)程。美國(guó)心理學(xué)家浩斯頓(Houston)等人把認(rèn)知?dú)w納為以下5種主要類型: (1) 認(rèn)知是信息的處理過(guò)程; (2) 認(rèn)知是
26、心理上的符號(hào)運(yùn)算; (3) 認(rèn)知是問(wèn)題求解; (4) 認(rèn)知是思維; (5) 認(rèn)知是一組相關(guān)的活動(dòng),如知覺(jué)、記憶、思維、判斷、推理、問(wèn)題求解、學(xué)習(xí)、想象、概念形成及語(yǔ)言使用等。 認(rèn)知科學(xué):認(rèn)知科學(xué)(亦稱思維科學(xué))是研究人類感知和思維信息處理過(guò)程的一門學(xué)科,其主要研究目的就是要說(shuō)明和解釋人類在完成認(rèn)知活動(dòng)時(shí)是如何進(jìn)行信息加工的。 認(rèn)知科學(xué)也是人工智能的重要理論基礎(chǔ),對(duì)人工智能發(fā)展起著根本性的作用。認(rèn)知科學(xué)涉及的問(wèn)題非常廣泛,除了像浩斯頓提出的知覺(jué)、語(yǔ)言、學(xué)習(xí)、記憶、思維、問(wèn)題求解、創(chuàng)造、注意、想象等相關(guān)聯(lián)活動(dòng)外,還會(huì)受到環(huán)境、社會(huì)、文化背景等方面的影響。 從認(rèn)知觀點(diǎn)看,AI應(yīng)同時(shí)開展對(duì)邏輯思維、形
27、象思維和靈感思維的研究281.3.3智能模擬的方法和技術(shù)研究(1/2)機(jī)器感知 就是要讓計(jì)算機(jī)具有類似于人的感知能力,如視覺(jué)、聽覺(jué)、觸覺(jué)、嗅覺(jué)、味覺(jué) 機(jī)器視覺(jué)(或叫計(jì)算機(jī)視覺(jué)):就是給計(jì)算機(jī)配上能看的視覺(jué)器官,如攝像機(jī)等,使它可以識(shí)別并理解文字、圖像、景物等 機(jī)器聽覺(jué)(或叫計(jì)算機(jī)聽覺(jué)):就是給計(jì)算配上能聽的聽覺(jué)器官,如話筒等,使計(jì)算機(jī)能夠識(shí)別并理解語(yǔ)言、聲音等。 機(jī)器感知相當(dāng)于智能系統(tǒng)的輸入部分。 機(jī)器感知的專門的研究領(lǐng)域:計(jì)算機(jī)視覺(jué)、模式識(shí)別、自然語(yǔ)言理解機(jī)器思維 讓計(jì)算機(jī)能夠?qū)Ω兄降耐饨缧畔⒑妥约寒a(chǎn)生的內(nèi)部信息進(jìn)行思維性加工 邏輯思維 形象思維 靈感思維291.3.3 智能模擬的方法和技
28、術(shù)研究(2/2)機(jī)器學(xué)習(xí) 讓計(jì)算機(jī)能夠像人那樣自動(dòng)地獲取新知識(shí),并在實(shí)踐中不斷地完善自我和增強(qiáng)能力。 機(jī)器學(xué)習(xí)方法:機(jī)械學(xué)習(xí)、類比學(xué)習(xí)、歸納學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、遺傳學(xué)習(xí)和連接學(xué)習(xí)等 機(jī)器行為 讓計(jì)算機(jī)能夠具有像人那樣地行動(dòng)和表達(dá)能力,如走、跑、拿、說(shuō)、唱、寫畫等。 相當(dāng)于智能系統(tǒng)的輸出部分。 智能系統(tǒng)與智能機(jī)器 無(wú)論是人工智能的近期目標(biāo)還是遠(yuǎn)期目標(biāo),都需要建立智能系統(tǒng)或構(gòu)造智能機(jī)器 需要開展對(duì)系統(tǒng)模型、構(gòu)造技術(shù)、構(gòu)造工具及語(yǔ)言環(huán)境等研究 30第1章 人工智能概述1.1 AI的定義及其研究目標(biāo)1.2 AI的產(chǎn)生與發(fā)展1.3 AI研究的基本內(nèi)容1.4 AI研究的不同學(xué)派 符號(hào)主義 聯(lián)結(jié)主義 行為主義1
29、.5 AI的主要研究和應(yīng)用領(lǐng)域1.6 AI近期發(fā)展分析1.7 我國(guó)智能科學(xué)技術(shù)教育體系311.4 AI研究中的不同學(xué)派不同學(xué)派符號(hào)主義學(xué)派(邏輯主義、心理學(xué)派) 主要觀點(diǎn):AI起源于數(shù)理邏輯,人類認(rèn)知的基元是符號(hào),認(rèn)知過(guò)程是符號(hào)表示上的一種運(yùn)算 代表性成果:厄爾和西蒙等人研制的稱為邏輯理論機(jī)的數(shù)學(xué)定理證明程序LT 代表人物:紐厄爾、肖、西蒙和尼爾遜(Nilsson)等 連接主義學(xué)派(仿生學(xué)派或心理學(xué)派) 主要觀點(diǎn):AI起源于仿生學(xué),特別是人腦模型,人類認(rèn)知的基元是神經(jīng)元,認(rèn)知過(guò)程是神經(jīng)元的連接活動(dòng)過(guò)程 代表性成果:由麥克洛奇和皮茲創(chuàng)立的腦模型,即MP模型 代表人物:麥克洛奇和皮茲行為主義學(xué)派(
30、進(jìn)化主義、控制論學(xué)派) 主要觀點(diǎn):AI起源于控制論,智能取決于感知和行為,取決于對(duì)外界復(fù)雜環(huán)境的適應(yīng),而不是推理。 代表性成果:Brooks教授研制的機(jī)器蟲 代表人物: Brooks教授321.4 AI研究中的不同學(xué)派不同學(xué)派的理論之爭(zhēng)符號(hào)主義 智能的基礎(chǔ)是知識(shí),其核心是知識(shí)表示和知識(shí)推理;知識(shí)可用符號(hào)表示,也可用符號(hào)進(jìn)行推理,因而可以建立基于知識(shí)的人類智能和機(jī)器智能的統(tǒng)一的理論體系。連接主義 思維的基元是神經(jīng)元,而不是符號(hào);思維過(guò)程是神經(jīng)元的聯(lián)結(jié)活動(dòng)過(guò)程,而不是符號(hào)運(yùn)算過(guò)程;反對(duì)符號(hào)主義關(guān)于物理符號(hào)系統(tǒng)的假設(shè)。 行為主義 智能取決于感知和行動(dòng),提出了智能行為的“感知?jiǎng)幼鳌蹦P停恢悄懿恍枰R(shí)
31、、不需要表示、不需要推理;人工智能可以像人類智能那樣逐步進(jìn)化331.4 AI研究中的不同學(xué)派不同學(xué)派的方法之爭(zhēng)符號(hào)主義 功能模擬 構(gòu)造能夠模擬大腦功能的智能系統(tǒng)。相當(dāng)于“鳥飛”連接主義 結(jié)構(gòu)模擬 構(gòu)造模擬大腦結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)系統(tǒng)。相當(dāng)于“飛鳥”行為主義 行為模擬 構(gòu)造具有進(jìn)化能力的智能系統(tǒng)。相當(dāng)于“由猿到人”34第1章 人工智能概述1.1 AI的定義及其研究目標(biāo)1.2 AI的產(chǎn)生與發(fā)展1.3 AI研究的基本內(nèi)容1.4 AI研究的不同學(xué)派1.5 AI的主要研究和應(yīng)用領(lǐng)域 機(jī)器思維、機(jī)器感知、機(jī)器行為、計(jì)算智能、機(jī)器學(xué)習(xí) 分布智能、智能系統(tǒng)、人工心理與人工情感 人工生命、人工智能的典型應(yīng)用1.6 A
32、I近期發(fā)展分析1.7 我國(guó)智能科學(xué)技術(shù)教育體系351.5.1 機(jī)器思維 機(jī)器思維:就是讓計(jì)算機(jī)模仿和實(shí)現(xiàn)人的思維能力,以對(duì)感知到的外界信息和自己產(chǎn)生的內(nèi)部信息進(jìn)行思維性加工。 包括:推理、搜索、規(guī)劃等方面的研究。 361.5.1 機(jī)器思維推理 推理的概念:推理是指按照某種策略從已知事實(shí)出發(fā)利用知識(shí)推出所需結(jié)論的過(guò)程。 推理的類型:可根據(jù)所用知識(shí)的確定性,將其分為: 確定性推理,指推理所使用的知識(shí)和推出的結(jié)論都是可以精確表示的,其真值要么為真、要么為假。 不確定性推理,指推理所使用的知識(shí)和推出的結(jié)論可以是不確定的。所謂不確定性是對(duì)非精確性、模糊型和非完備性的統(tǒng)稱。 推理的理論基礎(chǔ):邏輯是一門研究
33、人們思維規(guī)律的學(xué)科,數(shù)理邏輯則是用數(shù)學(xué)的方法去研究邏輯問(wèn)題。 確定性推理主要是基于一階經(jīng)典邏輯。它能解決的問(wèn)題很有限。 不確定性推理主要基于非經(jīng)典邏輯和概率等。非一階經(jīng)典邏輯是泛指除一階經(jīng)典邏輯以外的其他各種邏輯,如多值邏輯、模糊邏輯、模態(tài)邏輯、概率邏輯、默認(rèn)邏輯、次協(xié)調(diào)邏輯及泛邏輯等。 最常用的不確定性推理方法:基于可信度的確定性理論,基于Bayes公式的主觀Bayes方法,基于概率的證據(jù)理論和基于模糊邏輯的可能性理論等。371.5.1 機(jī)器思維搜索 搜索的概念:是指為了達(dá)到某一目標(biāo),不斷尋找推理線路,以引導(dǎo)和控制推理,使問(wèn)題得以解決的過(guò)程。 搜索的類型:可根據(jù)問(wèn)題的表示方式將其分為狀態(tài)空間
34、搜索和與/或樹搜索兩大類型。 狀態(tài)空間搜索是一種用狀態(tài)空間法求解問(wèn)題時(shí)的搜索方法; 與/或樹搜索是一種用問(wèn)題規(guī)約法求解問(wèn)題時(shí)的搜索方法。 搜索的主要問(wèn)題:人工智能最關(guān)心的是如何利用搜索過(guò)程所得到的對(duì)盡快達(dá)到目標(biāo)有用的信息來(lái)引導(dǎo)搜索過(guò)程,即啟發(fā)式搜索方法。 狀態(tài)空間的啟發(fā)式搜索方法 與/或樹的啟發(fā)式搜索方法381.5.1 機(jī)器思維規(guī)劃 規(guī)劃的概念:是指從某個(gè)特定問(wèn)題狀態(tài)出發(fā),尋找并建立一個(gè)操作序列,直到求得目標(biāo)狀態(tài)為止的一個(gè)行動(dòng)過(guò)程的描述。 規(guī)劃的特點(diǎn):與一般問(wèn)題求解技術(shù)相比,規(guī)劃更側(cè)重于問(wèn)題求解過(guò)程,并且要解決的問(wèn)題一般是真實(shí)世界的實(shí)際問(wèn)題,而不是抽象的數(shù)學(xué)模型。例如,第2章的機(jī)器人移盒子、猴
35、子摘香蕉等問(wèn)題。 規(guī)劃系統(tǒng)的例子:斯坦福研究所問(wèn)題求解系統(tǒng)(Stanford Research Institute Problem Solver, STRIPS ),是一種基于狀態(tài)空間和F規(guī)則的規(guī)劃系統(tǒng)。它由以下3部分所組成: (1) 世界模型:用一階謂詞公式表示,它包括問(wèn)題的初始狀態(tài)和目標(biāo)狀態(tài)。 (2) 操作符(即F規(guī)則):它包括先決條件、刪除表和添加表。 (3) 操作方法:它采用狀態(tài)空間表示和中間-結(jié)局分析的方法。其中,狀態(tài)空間包括初始狀態(tài)、中間狀態(tài)和目標(biāo)狀態(tài);中間-結(jié)局分析的每一步都選擇能夠縮小當(dāng)前狀態(tài)與目標(biāo)狀態(tài)之間的差距的先決條件可以滿足的F規(guī)則執(zhí)行,直至到達(dá)目標(biāo)為止。391.5.2
36、機(jī)器感知 機(jī)器感知是機(jī)器獲取外界信息的主要途徑,也是機(jī)器智能的重要組成部分。 所謂機(jī)器感知,就是要讓計(jì)算機(jī)具有類似于人的感知能力,如視覺(jué)、聽覺(jué)、觸覺(jué)、嗅覺(jué)、味覺(jué)。 下面主要介紹機(jī)器視覺(jué)、模式識(shí)別、自然語(yǔ)言理解。401.5.2 機(jī)器感知計(jì)算機(jī)視覺(jué) 概念:用計(jì)算機(jī)來(lái)實(shí)現(xiàn)或模擬人類的視覺(jué)功能,其主要研究目標(biāo)是使計(jì)算機(jī)具有通過(guò)二維圖像認(rèn)知三維環(huán)境信息的能力。 重要性:在人類感知到的外界信息中,有80%以上是通過(guò)視覺(jué)得到的。 視覺(jué)系統(tǒng):人類視覺(jué)系統(tǒng)的功能是通過(guò)眼睛與大腦共同實(shí)現(xiàn)的。人們視野中的物體在可見(jiàn)光的照射下,先在眼睛的視網(wǎng)膜上形成圖像,然后由感光細(xì)胞轉(zhuǎn)換成神經(jīng)脈沖信號(hào),再經(jīng)神經(jīng)纖維傳入大腦皮層,最
37、后由大腦皮層對(duì)其進(jìn)行處理與理解。 視覺(jué),不僅僅指對(duì)光信號(hào)的感受,它包括了對(duì)視覺(jué)信息的獲取、傳輸、處理、存儲(chǔ)與理解的全過(guò)程。411.5.2 機(jī)器感知模式識(shí)別模式識(shí)別的概念 是指讓計(jì)算機(jī)能夠?qū)o定的事務(wù)進(jìn)行鑒別,并把它歸入與其相同或相似的模式中。 被鑒別的事物可以是物理的、化學(xué)的、生理的,也可以是文字、圖像、聲音等。模式識(shí)別的一般過(guò)程: (1) 采集待識(shí)別事物的模式信息; (2) 對(duì)其進(jìn)行各種變換和預(yù)處理,從中抽出有意義的特征或基元,得到待識(shí)別事物的模式; (3) 與機(jī)器中原有的各種標(biāo)準(zhǔn)模式進(jìn)行比較,完成對(duì)待識(shí)別事物的分類識(shí)別; (4) 輸出識(shí)別結(jié)果。 421.5.2 機(jī)器感知自然語(yǔ)言理處理自然語(yǔ)
38、言處理包括的主要內(nèi)容 機(jī)器翻譯 把一種自然語(yǔ)言翻譯成另外一種自然語(yǔ)言 自然語(yǔ)言理解 概念:主要研究如何使計(jì)算機(jī)能夠理解和生成自然語(yǔ)言。 理解的語(yǔ)言類型:聲音語(yǔ)言、書面語(yǔ)言。 主要步驟:語(yǔ)音分析、詞法分析、句法分析、語(yǔ)義分析、語(yǔ)用分析。 自然語(yǔ)言理解的意義 該研究不僅對(duì)智能人機(jī)接口有著重要的實(shí)際意義,而且對(duì)不確定人工智能的研究也具有重大的理論價(jià)值。有學(xué)者指出:人工智能如果不能用自然語(yǔ)言作為其知識(shí)表示基礎(chǔ),建立起不確定人工智能的理論和方法,人工智能也就永遠(yuǎn)實(shí)現(xiàn)不了跨越的夢(mèng)想。 431.5.3 機(jī)器行為 機(jī)器行為就是讓計(jì)算機(jī)能夠具有像人那樣地行動(dòng)和表達(dá)能力,如走、跑、拿、說(shuō)、唱、寫畫等。 機(jī)器行為則
39、可看作智能系統(tǒng)的輸出部分。 下面主要討論:智能控制、智能檢索和智能機(jī)器人等。 441.5.3 機(jī)器行為智能控制 智能控制的概念:是指那種無(wú)需或需要盡可能少的人工干預(yù)就能獨(dú)立的驅(qū)動(dòng)智能機(jī)器實(shí)現(xiàn)其目標(biāo)的控制過(guò)程。它是人工智能技術(shù)與傳統(tǒng)自動(dòng)控制技術(shù)相結(jié)合的產(chǎn)物。 智能控制系統(tǒng):是指那種能夠?qū)崿F(xiàn)某種控制任務(wù),具有自學(xué)習(xí)、自適應(yīng)和自組織功能的智能系統(tǒng)。從結(jié)構(gòu)上,它由傳感器、感知信息處理模塊、認(rèn)知模塊、規(guī)劃和控制模塊、執(zhí)行器和通信接口模塊等主要部件所組成。 智能控制的主要應(yīng)用領(lǐng)域:智 能機(jī)器人系統(tǒng)、計(jì)算機(jī)集成制造系統(tǒng)(CIMS)、復(fù)雜工業(yè)過(guò)程的控制系統(tǒng)、航空航天控制系統(tǒng)、社會(huì)經(jīng)濟(jì)管理系統(tǒng)、交通運(yùn)輸系統(tǒng)、環(huán)
40、保及能源系統(tǒng)等。451.5.3 機(jī)器行為智能檢索 智能檢索的概念:是指利用人工智能的方法從大量信息中盡快找到所需要的信息或知識(shí)。 智能檢索的重要性:目前,在各種數(shù)據(jù)庫(kù)中,尤其是互聯(lián)網(wǎng)上存放著大量的、甚至是海量的信息或知識(shí)。面對(duì)這種信息海洋,如果還用傳統(tǒng)的人工方式進(jìn)行檢索,已很不現(xiàn)實(shí)。 智能檢索系統(tǒng)須解決的主要問(wèn)題: (1) 具有一定的自然語(yǔ)言理解能力,能理解用自然語(yǔ)言提出的各種詢問(wèn); (2) 具有一定的推理能力,能夠根據(jù)已知的信息或知識(shí),演繹出所需要的答案; (3) 系統(tǒng)應(yīng)擁有一定的常識(shí)性知識(shí),以補(bǔ)充學(xué)科范圍的專業(yè)知識(shí)。系統(tǒng)根據(jù)這些常識(shí),將能演繹出更一般詢問(wèn)的一些答案。461.5.3 機(jī)器行為
41、智能機(jī)器人 機(jī)器人(Robots)和機(jī)器人學(xué):機(jī)器人(Robots)是一種可再編程的多功能操作裝置。機(jī)器人學(xué)是在電子學(xué)、人工智能、控制論、系統(tǒng)工程、精密機(jī)械、信息傳感、仿生學(xué)、以及心理學(xué)等多種學(xué)科或技術(shù)發(fā)展的基礎(chǔ)上形成的一種綜合性技術(shù)學(xué)科。 機(jī)器人研究的意義:機(jī)器人既是人工智能的研究對(duì)象,同時(shí)又是人工智能的試驗(yàn)場(chǎng)地,人工智能的所有技術(shù)幾乎都可以在這個(gè)領(lǐng)域得到應(yīng)用。 機(jī)器人的發(fā)展過(guò)程: 經(jīng)歷了遙控、程序、自適應(yīng)、智能機(jī)器人、情感機(jī)器人。 人工智能的主要研究對(duì)象是智能機(jī)器人和情感機(jī)器人。 智能機(jī)器人具有的能力:感知能力、思維能力和行為能力的機(jī)器人。這種機(jī)器人能夠主動(dòng)的適應(yīng)外界環(huán)境變化,并能夠通過(guò)學(xué)
42、習(xí)豐富自己的知識(shí)、提高自己的工作能力。 情感機(jī)器人:是一種具有情感(愛(ài)、恨)和情緒(喜、怒、哀、樂(lè))功能新一代機(jī)器人。47MIT研究的情感機(jī)器人481.5.4 計(jì)算智能 計(jì)算智能(Computational Intelligence,CI)是借鑒仿生學(xué)的思想,基于人們對(duì)生物體智能機(jī)理的認(rèn)識(shí),采用數(shù)值計(jì)算的方法去模擬和實(shí)現(xiàn)人類的智能。 計(jì)算智能的三大基本領(lǐng)域包括神經(jīng)計(jì)算、進(jìn)化計(jì)算、模糊計(jì)算。 491.5.4 計(jì)算智能神經(jīng)計(jì)算 神經(jīng)計(jì)算的概念:亦稱神經(jīng)網(wǎng)絡(luò)(Neural Network,NN),它是通過(guò)對(duì)大量人工神經(jīng)元的廣泛并行互聯(lián)所形成的一種人工網(wǎng)絡(luò)系統(tǒng),用于模擬生物神經(jīng)系統(tǒng)的結(jié)構(gòu)和功能。 主要
43、研究?jī)?nèi)容:包括人工神經(jīng)元的結(jié)構(gòu)和模型,人工神經(jīng)網(wǎng)絡(luò)的互連結(jié)構(gòu)和系統(tǒng)模型,基于神經(jīng)網(wǎng)絡(luò)的聯(lián)結(jié)學(xué)習(xí)機(jī)制等 人工神經(jīng)元:是指用人工方法構(gòu)造單個(gè)神經(jīng)元,它有抑制和興奮兩種工作狀態(tài),可以接受外界刺激,也可以向外界輸出自身的狀態(tài),用于模擬生物神經(jīng)元的結(jié)構(gòu)和功能,是人工神經(jīng)網(wǎng)絡(luò)的基本處理單元。 人工神經(jīng)網(wǎng)絡(luò)的互連結(jié)構(gòu)(或稱拓?fù)浣Y(jié)構(gòu))是指單個(gè)神經(jīng)元之間的連接模式,它是構(gòu)造神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)。從互連結(jié)構(gòu)的角度,神經(jīng)網(wǎng)絡(luò)可分為前饋網(wǎng)絡(luò)和反饋網(wǎng)絡(luò)兩種主要類型。 網(wǎng)絡(luò)模型是對(duì)網(wǎng)絡(luò)結(jié)構(gòu)、連接權(quán)值和學(xué)習(xí)能力的總括。最常用的有傳統(tǒng)的感知器模型,具有誤差前向傳播功能的前向傳播網(wǎng)絡(luò)模型,采用反饋連接方式的反饋網(wǎng)絡(luò)模型等。 神經(jīng)網(wǎng)絡(luò)
44、具有自學(xué)習(xí)、自組織、自適應(yīng)、聯(lián)想、模糊推理等能力,在模仿生物神經(jīng)計(jì)算方面有一定優(yōu)勢(shì)。目前,神經(jīng)計(jì)算的研究和應(yīng)用已滲透到許多領(lǐng)域,如機(jī)器學(xué)習(xí)、專家系統(tǒng)、智能控制、模式識(shí)別等。 501.5.4 計(jì)算智能進(jìn)化計(jì)算 進(jìn)化計(jì)算的概念:是一種模擬自然界生物進(jìn)化過(guò)程與機(jī)制,進(jìn)行問(wèn)題求解的自組織、自適應(yīng)的隨機(jī)搜索技術(shù)。它以達(dá)爾文進(jìn)化論的“物竟天擇、適者生存”作為算法的進(jìn)化規(guī)則,并結(jié)合孟德爾的遺傳變異理論,將生物進(jìn)化過(guò)程中的繁殖、變異、競(jìng)爭(zhēng)和選擇引入到了算法中,是一種對(duì)人類智能的演化模擬方法。 進(jìn)化計(jì)算的主要分支:遺傳算法、進(jìn)化策略、進(jìn)化規(guī)劃和遺傳規(guī)劃四大分支。其中,遺傳算法是進(jìn)化計(jì)算中最初形成的一種具有普遍影
45、響的模擬進(jìn)化優(yōu)化算法。 遺傳算法的基本思想:(美國(guó)密執(zhí)安大學(xué)霍蘭德教授1962提出)是使用模擬生物和人類進(jìn)化的方法來(lái)求解復(fù)雜問(wèn)題。它從初始種群出發(fā),采用優(yōu)勝略汰、適者生存的自然法則選擇個(gè)體,并通過(guò)雜交、變異產(chǎn)生新一代種群,如此逐代進(jìn)化,直到滿足目標(biāo)為止。511.5.4 計(jì)算智能模糊計(jì)算 模糊計(jì)算亦稱模糊系統(tǒng),是通過(guò)對(duì)人類處理模糊現(xiàn)象的認(rèn)知能力的認(rèn)識(shí),用模糊集合和模糊邏輯去模擬人類的智能行為的。模糊集合與模糊邏輯是美國(guó)加州大學(xué)扎德(Zadeh)教授1965年提出來(lái)的一種處理因模糊而引起的不確定性的有效方法。 模糊概念的定義:通常,人們把那種因沒(méi)有嚴(yán)格邊界劃分而無(wú)法精確刻畫的現(xiàn)象稱為模糊現(xiàn)象,并把
46、反映模糊現(xiàn)象的各種概念稱為模糊概念。例如, “大”、“小”、“多”、“少”等。 模糊概念的表示:通常是用模糊集合來(lái)表示的,而模糊集合又是用隸屬函數(shù)來(lái)刻畫的。一個(gè)隸屬函數(shù)描述一個(gè)模糊概念,其函數(shù)值為0, 1區(qū)間的實(shí)數(shù),用來(lái)描述函數(shù)自變量所代表的模糊事件隸屬于該模糊概念的程度。 模糊計(jì)算的爭(zhēng)論:一方面模糊邏輯存在一定缺陷;另一方面它在推理、控制、決策等方面得到了非常廣泛的應(yīng)用。521.5.5 機(jī)器學(xué)習(xí) 機(jī)器學(xué)習(xí)就是讓計(jì)算機(jī)能夠像人那樣自動(dòng)地獲取新知識(shí),并在實(shí)踐中不斷地完善自我和增強(qiáng)能力。 機(jī)器學(xué)習(xí)是機(jī)器獲取知識(shí)的根本途徑,同時(shí)也是機(jī)器具有智能的重要標(biāo)志。 機(jī)器學(xué)習(xí)有多種不同的分類方法,如果按照對(duì)人
47、類學(xué)習(xí)的模擬方式,機(jī)器學(xué)習(xí)可分為符號(hào)學(xué)習(xí)和神經(jīng)學(xué)習(xí)等531.5.5 機(jī)器學(xué)習(xí)符號(hào)學(xué)習(xí) 符號(hào)學(xué)習(xí)的概念:是指從功能上模擬人類學(xué)習(xí)能力的機(jī)器學(xué)習(xí)方法,它是一種基于符號(hào)主義學(xué)派的機(jī)器學(xué)習(xí)觀點(diǎn)。 符號(hào)學(xué)習(xí)的類型:可根據(jù)學(xué)習(xí)策略,即學(xué)習(xí)中所使用的推理方法,將其分為記憶學(xué)習(xí)、歸納學(xué)習(xí)、演繹學(xué)習(xí)等。 記憶學(xué)習(xí)也叫死記硬背學(xué)習(xí),它是一種最基本的學(xué)習(xí)方法,原因是任何學(xué)習(xí)系統(tǒng)都必須記住它們所獲取的知識(shí),以便將來(lái)使用。 歸納學(xué)習(xí)是指以歸納推理為基礎(chǔ)的學(xué)習(xí),它是機(jī)器學(xué)習(xí)中研究得較多的一種學(xué)習(xí)類型,其任務(wù)是要從關(guān)于某個(gè)概念的一系列已知的正例和反例中歸納出一個(gè)一般的概念描述。例如,示例學(xué)習(xí)和決策樹學(xué)習(xí)。 演繹學(xué)習(xí)是指以演
48、繹推理為基礎(chǔ)的學(xué)習(xí),解釋學(xué)習(xí)是一種演繹學(xué)習(xí)方法,它是在領(lǐng)域知識(shí)的指導(dǎo)下,通過(guò)對(duì)單個(gè)問(wèn)題求解例子的分析,構(gòu)造出求解過(guò)程的因果解釋結(jié)構(gòu),并對(duì)該解釋結(jié)構(gòu)進(jìn)行概括化處理,得到一個(gè)可又來(lái)求解類似問(wèn)題的一般性知識(shí)。541.5.5 機(jī)器學(xué)習(xí)神經(jīng)學(xué)習(xí) 神經(jīng)學(xué)習(xí)的概念:神經(jīng)學(xué)習(xí)也稱為連接學(xué)習(xí),它是一種基于人工神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)方法。現(xiàn)有研究表明,人腦的學(xué)習(xí)和記憶過(guò)程都是通過(guò)神經(jīng)系統(tǒng)來(lái)完成的。在神經(jīng)系統(tǒng)中,神經(jīng)元既是學(xué)習(xí)的基本單位,同是也是記憶的基本單位。 神經(jīng)學(xué)習(xí)的類型: 感知器學(xué)習(xí)實(shí)際上是一種基于糾錯(cuò)學(xué)習(xí)規(guī)則,采用迭代的思想對(duì)連接權(quán)值和閾值進(jìn)行不斷調(diào)整,直到滿足結(jié)束條件為止的學(xué)習(xí)算法。 BP網(wǎng)絡(luò)學(xué)習(xí)是一種誤差反向
49、傳播網(wǎng)絡(luò)學(xué)習(xí)算法。這種學(xué)習(xí)算法的學(xué)習(xí)過(guò)程由輸出模式的正向傳播過(guò)程和誤差的反向傳播過(guò)程所組成。其中,誤差的反向傳播過(guò)程用于修改各層神經(jīng)元的連接權(quán)值,以逐步減少誤差信號(hào),直至得到所期望的輸出模式為止。 Hopfield網(wǎng)絡(luò)學(xué)習(xí)實(shí)際上是要尋求系統(tǒng)的穩(wěn)定狀態(tài),即從網(wǎng)絡(luò)的初始狀態(tài)開始,逐漸向其穩(wěn)定狀態(tài)過(guò)渡,直至達(dá)到穩(wěn)定狀態(tài)為止。至于網(wǎng)絡(luò)的穩(wěn)定性,則是通過(guò)一個(gè)能量函數(shù)來(lái)描述的。 551.5.5 機(jī)器學(xué)習(xí)數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn) 概念:知識(shí)發(fā)現(xiàn)和數(shù)據(jù)挖掘是在數(shù)據(jù)庫(kù)的基礎(chǔ)上實(shí)現(xiàn)的一種知識(shí)發(fā)現(xiàn)系統(tǒng)。它通過(guò)綜合運(yùn)用統(tǒng)計(jì)學(xué)、粗糙集、模糊數(shù)學(xué)、機(jī)器學(xué)習(xí)和專家系統(tǒng)等多種學(xué)習(xí)手段和方法,從數(shù)據(jù)庫(kù)中提煉和抽取知識(shí),從而可以揭示出
50、蘊(yùn)含在這些數(shù)據(jù)背后的客觀世界的內(nèi)在聯(lián)系和本質(zhì)原理,實(shí)現(xiàn)知識(shí)的自動(dòng)獲取。 與傳統(tǒng)數(shù)據(jù)庫(kù)技術(shù)的區(qū)別:傳統(tǒng)數(shù)據(jù)庫(kù)技術(shù)僅限于對(duì)數(shù)據(jù)庫(kù)的查詢和檢索,不能夠從數(shù)據(jù)庫(kù)中提取知識(shí)。知識(shí)發(fā)現(xiàn)和數(shù)據(jù)挖掘以數(shù)據(jù)庫(kù)作為知識(shí)源去抽取知識(shí),不僅可以提高數(shù)據(jù)庫(kù)中數(shù)據(jù)的利用價(jià)值,同時(shí)也為各種智能系統(tǒng)的知識(shí)獲取開辟了一條新的途徑。 發(fā)展:隨著大規(guī)模數(shù)據(jù)庫(kù)和互聯(lián)網(wǎng)的迅速發(fā)展,知識(shí)發(fā)現(xiàn)和數(shù)據(jù)挖掘也從面向數(shù)據(jù)庫(kù)的結(jié)構(gòu)化信息的數(shù)據(jù)挖掘發(fā)展到面向數(shù)據(jù)倉(cāng)庫(kù)和互聯(lián)網(wǎng)的海量、半結(jié)構(gòu)化或非結(jié)構(gòu)化信息的數(shù)據(jù)挖掘。561.5.6 分布智能 分布智能的概念: 分布智能主要研究在邏輯上或物理上分布的智能系統(tǒng)之間如何相互協(xié)調(diào)各自的智能行為,實(shí)現(xiàn)問(wèn)題的并行
51、求解。 分布智能的兩個(gè)主要方向: 分布式問(wèn)題求解主要研究如何在多個(gè)合作者之間進(jìn)行任務(wù)劃分和問(wèn)題求解,它一般是針對(duì)某一問(wèn)題去創(chuàng)建一個(gè)能夠進(jìn)行合作求解的協(xié)作群體; 多Agent系統(tǒng)主要研究如何在一群自主的Agent之間進(jìn)行智能行為的協(xié)調(diào),它不限于單一目標(biāo),可創(chuàng)建一個(gè)能夠共同處理單個(gè)目標(biāo)或多個(gè)目標(biāo)的智能群體。 多Agent系統(tǒng)的組成與工作:它由多個(gè)自主Agent所組成,其中的每個(gè)Agent都可以自主運(yùn)行和自主交互,即當(dāng)一個(gè)Agent 需要與別的Agent合作時(shí),就通過(guò)相應(yīng)的通信機(jī)制去尋找可以合作并愿意合作的Agent,以共同解決問(wèn)題。571.5.7 智能系統(tǒng)智能系統(tǒng)可以泛指各種具有智能特征和功能的軟
52、硬件系統(tǒng)。從這種意義上講,前面所討論的不少研究?jī)?nèi)容都應(yīng)以智能系統(tǒng)的形式來(lái)出現(xiàn),例如智能控制系統(tǒng)、智能制造系統(tǒng)、智能檢索系統(tǒng)等。這里主要介紹除前述研究?jī)?nèi)容以外的專家系統(tǒng)和智能決策支持系統(tǒng)。 581.5.7 智能系統(tǒng)專家系統(tǒng) 專家系統(tǒng)是一種基于知識(shí)的智能系統(tǒng),它將領(lǐng)域?qū)<业慕?jīng)驗(yàn)用知識(shí)表示方法表示出來(lái),并放入知識(shí)庫(kù)中,供推理機(jī)使用。 隨著計(jì)算網(wǎng)絡(luò)、多Agent、計(jì)算智能等技術(shù)的發(fā)展,出現(xiàn)了模糊專家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)、基于Web的專家系統(tǒng)、協(xié)同式專家系統(tǒng)和分布式專家系統(tǒng)等。 用 戶 界 面 解釋模塊知識(shí)獲取 知 識(shí) 庫(kù)綜合數(shù)據(jù)庫(kù) 推 理 機(jī)591.5.7 智能系統(tǒng)智能決策支持系統(tǒng) 智能決策支持系統(tǒng)
53、是指那種在傳統(tǒng)決策支持系統(tǒng)中增加了相應(yīng)的智能部件的決策支持系統(tǒng)。 智能決策支持系統(tǒng)是把人工智能技術(shù),尤其是專家系統(tǒng)技術(shù)與決策支持系統(tǒng)相結(jié)合的產(chǎn)物,具有很寬的應(yīng)用范圍和很好的應(yīng)用前景。 問(wèn)題處理與人機(jī)交互模型庫(kù)管理系統(tǒng)數(shù)據(jù)庫(kù)管理系統(tǒng)知識(shí)庫(kù)管理系統(tǒng) 模型庫(kù)知識(shí)庫(kù)數(shù)據(jù)庫(kù)推理機(jī)601.5.8 人工心理與人工情感(1/2)智能、情感和心理智能:是指感知、記憶、思維、學(xué)習(xí)、自適應(yīng)、行為等能力情感:指人對(duì)客觀現(xiàn)實(shí)的態(tài)度的體驗(yàn)。 情緒(側(cè)重于生理現(xiàn)象:喜、怒、哀、樂(lè)) 情感(側(cè)重于價(jià)值判斷:愛(ài)、恨) 情操(高級(jí)的情感現(xiàn)象:道德、理智、審美)心理:認(rèn)知、情感、意志 認(rèn)知:實(shí)踐活動(dòng)中對(duì)認(rèn)知信息的接收、編碼、存儲(chǔ)、
54、提取、使用;包括感知、思維、記憶等。 情感: 意志:自覺(jué)地確定目的,并根據(jù)目的調(diào)節(jié)支配自身的行動(dòng),克服困難,去實(shí)現(xiàn)預(yù)定目標(biāo)611.5.8人工心理與人工情感(2/2)人工智能、人工情感和人工心理人工智能:人工情感:人工情感(Artificial Emotion)是利用信息科學(xué)的手段對(duì)人類情感過(guò)程進(jìn)行模擬、識(shí)別和理解,使機(jī)器能夠產(chǎn)生類人情感并與人類進(jìn)行自然和諧地人機(jī)交互的研究領(lǐng)域人工心理:人工心理(Artificial Psychology)就是利用信息科學(xué)的手段, 對(duì)人的心理活動(dòng)(著重是人的情感、意志、性格、創(chuàng)造)的更全面再一次人工機(jī)器(計(jì)算機(jī)、模型算法等)模擬,其目的在于從心理學(xué)廣義層次上研究
55、人工情感、情感與認(rèn)知、動(dòng)機(jī)與情感的人工機(jī)器實(shí)現(xiàn)問(wèn)題621.5.9 人工生命 人工生命(Artificial Life)是美國(guó)洛斯阿拉莫斯(Los Alamos)非線性研究中心克里斯蘭頓(Chris Langton),在研究“混沌邊沿”的細(xì)胞自動(dòng)機(jī)中于1987年提出的一個(gè)概念。 他認(rèn)為:人工生命就是要研究能夠展示人類生命特征的人工系統(tǒng)。即研究以非碳水化合物為基礎(chǔ)的、具有人類生命特征的人造生命系統(tǒng)。 人工生命的研究目標(biāo)就是要?jiǎng)?chuàng)造出具有人類生命特征的人工生命。 人工生命研究并不關(guān)心十分關(guān)心已經(jīng)知道的以碳水化合物為基礎(chǔ)的生命的特殊形式,即“生命之所知(Lifeas we know it)”,它主要是生
56、物學(xué)研究的主題 人工生命最關(guān)心的是生命的存在形式,即“生命之所能(Life as it could be)”。生命之所能,是人工生命研究所關(guān)心的主要問(wèn)題。 按照這種觀點(diǎn),如果能從具體的生命中抽象出控制生命的“存在形式”,并且這種存在形式可以在另外一種物質(zhì)中實(shí)現(xiàn),那么就可以創(chuàng)造出基于不同物質(zhì)的另外一種生命-人工生命。 人工生命的主要研究?jī)?nèi)容主要包括計(jì)算機(jī)進(jìn)程、細(xì)胞自動(dòng)機(jī)、人工腦和進(jìn)化機(jī)器人等。其中,進(jìn)化機(jī)器人不同于傳統(tǒng)意義上的機(jī)器人,它是一種利用計(jì)算機(jī)和非有機(jī)物質(zhì)構(gòu)造出來(lái)的具有人類生命特征的人工生命實(shí)體。 631.5.10 人工智能的典型應(yīng)用 目前,人工智能的應(yīng)用領(lǐng)域已非常廣泛,從理論到技術(shù),從
57、產(chǎn)品到工程,從家庭到社會(huì),從地下到太空,智能無(wú)處不在。例如,智能CAD、智能CAI、智能產(chǎn)品、智能家居、智能樓宇、智能社區(qū)、智能網(wǎng)絡(luò)、智能電力、智能交通、智能控制、智能優(yōu)化、智能空天技術(shù)等。下面簡(jiǎn)單介紹其中的幾種典型應(yīng)用。641.5.10 人工智能的典型應(yīng)用博弈 博弈的概念:是一個(gè)有關(guān)對(duì)策和斗智問(wèn)題的研究領(lǐng)域。例如,下棋、打牌、戰(zhàn)爭(zhēng)等這一類競(jìng)爭(zhēng)性智能活動(dòng)都屬于博弈問(wèn)題。 博弈的例子: 國(guó)際上,人們對(duì)博弈的研究主要以下棋為對(duì)象,其個(gè)代表性成果是IBM公司研制的IBM超級(jí)計(jì)算機(jī)“深藍(lán)”和“小深”。國(guó)內(nèi),2006.8.9在北京舉辦的首屆中國(guó)象棋人機(jī)大賽中,計(jì)算機(jī)以3勝5和2負(fù)(比分11:9)的微弱優(yōu)
58、勢(shì)戰(zhàn)勝人類象棋大師。 研究博弈的目的:不完全是為了讓計(jì)算機(jī)與人下棋,而主要是為了給人工智能研究提供一個(gè)試驗(yàn)場(chǎng)地,同時(shí)也為了證明計(jì)算機(jī)具備有智能。試想,連國(guó)際象棋世界冠軍都能被計(jì)算機(jī)戰(zhàn)敗或者平局,可見(jiàn)計(jì)算機(jī)所具備了何等的智能水平。 65661.5.10 人工智能的典型應(yīng)用自動(dòng)定理證明 自動(dòng)定理證明的概念:就是讓計(jì)算機(jī)模擬人類證明定理的方法,自動(dòng)實(shí)現(xiàn)像人類證明定理那樣的非數(shù)值符號(hào)演算過(guò)程。它既是人工智能的一個(gè)重要研究領(lǐng)域,又是人工智能的一種實(shí)用方法。除數(shù)學(xué)定理外,還有很多非數(shù)學(xué)領(lǐng)域的任務(wù)如醫(yī)療診斷、難題求解等都可轉(zhuǎn)化成定理證明問(wèn)題。 自動(dòng)定理證明的主要方法: 自然演繹法:其基本思想是依據(jù)推理規(guī)則,
59、從前提和公理中推出一些定理,如果待證明的定理在恰在其中,則定理得證。這種方法的突出代表是紐厄爾等人研制的數(shù)學(xué)定理證明程序LT等。 判定法:其基本思想是對(duì)某一類問(wèn)題找出一個(gè)統(tǒng)一的、可在計(jì)算機(jī)上實(shí)現(xiàn)的算法。其突出代表是我國(guó)數(shù)學(xué)家吳文俊院士提出的證明初等幾何定理的算法。其基本思想是把幾何問(wèn)題代數(shù)化,即先通過(guò)引入坐標(biāo)把幾何定理中的假設(shè)和求證部分用一組代數(shù)方程表達(dá)出來(lái),然后再利用代數(shù)幾何中的代數(shù)簇理論求解代數(shù)方程,以證明定理的正確性。 定理證明器:是一種研究一切可判定問(wèn)題的證明方法。其典型代表是1965年魯賓遜提出的歸結(jié)原理。 人機(jī)交互定理證明:是一種通過(guò)人機(jī)交互方式來(lái)證明定理的方法。它把計(jì)算機(jī)作為數(shù)學(xué)
60、家的輔助工具,用計(jì)算機(jī)來(lái)幫助人完成手工證明中難以完成的那些計(jì)算、推理、窮舉等。其典型代表是四色定理證明。671.5.10 人工智能的典型應(yīng)用智能網(wǎng)絡(luò) 研究智能網(wǎng)絡(luò)的意義 (1)因特網(wǎng)在為人類提供了方便快捷的信息交換手段,但基于因特網(wǎng)的萬(wàn)維網(wǎng)(WWW)卻是一個(gè)雜亂無(wú)章、真假不分的信息海洋,它不區(qū)分問(wèn)題領(lǐng)域,不考慮用戶類型,不關(guān)心個(gè)人興趣,不過(guò)濾信息內(nèi)容。 (2) 傳統(tǒng)的搜索引擎在給人們提供方便的同時(shí),大量的信息冗余也給人們帶來(lái)了不少煩惱。因此,利用人工智能技術(shù)實(shí)現(xiàn)智能網(wǎng)絡(luò)具有極大的理論意義和實(shí)際價(jià)值。 智能網(wǎng)絡(luò)的兩個(gè)重研究?jī)?nèi)容 智能搜索引擎是一種能夠?yàn)橛脩籼峁┫嚓P(guān)度排序、角色登記、興趣識(shí)別、內(nèi)容
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科學(xué)技術(shù)職業(yè)學(xué)院《電氣控制與PLC控制技術(shù)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東酒店管理職業(yè)技術(shù)學(xué)院《建筑設(shè)計(jì)A(六)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東交通職業(yè)技術(shù)學(xué)院《市政管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東海洋大學(xué)《虛擬互動(dòng)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工商職業(yè)技術(shù)大學(xué)《學(xué)前教育發(fā)展前沿專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 《創(chuàng)投基金推介》課件
- 護(hù)理服務(wù)與安全課件
- 《職業(yè)精神解讀》課件
- 《膳食與營(yíng)養(yǎng)婦科》課件
- 贛州師范高等專科學(xué)?!督逃夹g(shù)在中學(xué)化學(xué)教學(xué)中的應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 手糊補(bǔ)強(qiáng)工A卷考試 (1)附有答案
- 【基于自由現(xiàn)金流貼現(xiàn)法的企業(yè)估值的案例探析3300字(論文)】
- 承德市承德縣2022-2023學(xué)年七年級(jí)上學(xué)期期末歷史試題【帶答案】
- CJT511-2017 鑄鐵檢查井蓋
- 船舶維修搶修方案
- 轉(zhuǎn)科患者交接記錄單
- 現(xiàn)代漢語(yǔ)智慧樹知到期末考試答案章節(jié)答案2024年昆明學(xué)院
- 人教版六年級(jí)數(shù)學(xué)(上冊(cè))期末調(diào)研題及答案
- 2023年人教版五年級(jí)上冊(cè)語(yǔ)文期末考試題(加答案)
- 舞蹈療法在減少壓力和焦慮中的作用
- 新中國(guó)史智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論