福建省五校2022年高三考前熱身數(shù)學(xué)試卷含解析_第1頁
福建省五校2022年高三考前熱身數(shù)學(xué)試卷含解析_第2頁
福建省五校2022年高三考前熱身數(shù)學(xué)試卷含解析_第3頁
福建省五校2022年高三考前熱身數(shù)學(xué)試卷含解析_第4頁
福建省五校2022年高三考前熱身數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在正項等比數(shù)列an中,a5-a1=15,a4-a2 =6,則a3=( )A2B4CD82要得到函數(shù)的圖象,只需將函數(shù)的圖象A向左平移個單位長度B向右平移個單位長度C向左平移個單位長度D向右平移個單位長度3已知隨機變量服從正態(tài)分布,( )ABC

2、D4已知函數(shù)()的最小值為0,則( )ABCD5已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是( )A若,則B若,則C若,則D若,則6在函數(shù):;中,最小正周期為的所有函數(shù)為( )ABCD7已知是虛數(shù)單位,若,則( )AB2CD38已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準(zhǔn)線相切于點,則拋物線方程為( )ABCD9已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為( )ABCD10如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是( )A甲班的數(shù)學(xué)成績平均

3、分的平均水平高于乙班B甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D甲、乙兩班這5次數(shù)學(xué)測試的總平均分是10311下列不等式正確的是( )ABCD12某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在中,內(nèi)角所對的邊分別是,若,則_.14在平面直角坐標(biāo)系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為_.15九章算術(shù)第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人

4、合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_人;所合買的物品價格為_元16已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù),.(1)解不等式;(2)若對任意的實數(shù)恒成立,求的取值范圍.18(12分)在四棱錐的底面中,平面,是的中點,且()求證:平面;()求二面角的余弦值;()線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.19(12分)在平面直角坐標(biāo)系xoy中,曲線C的方程為.以原點O為極點,x軸

5、的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)寫出曲線C的極坐標(biāo)方程,并求出直線l與曲線C的交點M,N的極坐標(biāo);(2)設(shè)P是橢圓上的動點,求面積的最大值.20(12分)如圖,在三棱柱中, 平面ABC.(1)證明:平面平面(2)求二面角的余弦值.21(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司年的相關(guān)數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺數(shù)(萬臺)2345671011該產(chǎn)品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)212228658065848

6、8部分計算結(jié)果:,注:年返修率=(1)從該公司年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;(2)根據(jù)散點圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中, ,.22(10分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點為重心,與相交于點.(1)求證:平面;(2)求三棱錐的體積.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)題意得到,解

7、得答案.【詳解】,解得或(舍去).故.故選:.【點睛】本題考查了等比數(shù)列的計算,意在考查學(xué)生的計算能力.2D【解析】先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.3B【解析】利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.4C【解析】設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像, 結(jié)合圖像,得,所以.故選:C【點睛】本題主要考查

8、了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.5D【解析】利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.6A【解析】逐一考查所給的函數(shù): ,該函數(shù)為偶函數(shù),周期 ;將函數(shù) 圖象x軸下方的圖象向上翻折即可得到 的圖象,該函數(shù)的周期為 ;函數(shù)的最小正周期為 ;函數(shù)的最小正周期為 ;綜上可得最小正周期為的所有函數(shù)為.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只

9、含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤一般地,經(jīng)過恒等變形成“yAsin(x),yAcos(x),yAtan(x)”的形式,再利用周期公式即可7A【解析】直接將兩邊同時乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復(fù)數(shù)的運算及其模的求法,是基礎(chǔ)題.8C【解析】根據(jù)拋物線方程求得點的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的

10、斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.9B【解析】先求出直線l的方程為y(xc),與yx聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率【詳解】雙曲線1(ab0)的漸近線方程為yx,直線l的傾斜角是漸近線OA傾斜角的2倍,kl,直線l的方程為y(xc),與yx聯(lián)立,可得y或y,2,ab,c2b,e故選B【點睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學(xué)生的計算能力,屬于中檔題10D【解析】計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4

11、;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.11D【解析】根據(jù),利用排除法,即可求解【詳解】由,可排除A、B、C選項,又由,所以故選D【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題12D【解析】如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件

12、.故,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.14【解析】利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,由已知,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建

13、立的方程或不等式,是一道容易題.157 53 【解析】根據(jù)物品價格不變,可設(shè)共有x人,列出方程求解即可【詳解】設(shè)共有人,由題意知 ,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學(xué)文化及一元一次方程的應(yīng)用,屬于中檔題.16【解析】由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點分別為,因為左、右焦點和點為某個等腰三角形的三個頂點,當(dāng)時,由可得,等式兩邊同除可得,解得(舍);當(dāng)時,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.三、解答

14、題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可試題解析: 整理得解得 解得 ,且無限趨近于4,綜上的取值范圍是18()詳見解析;();()存在,點為線段的中點.【解析】()連結(jié),則四邊形為平行四邊形,得到證明.()建立如圖所示坐標(biāo)系,平面法向量為,平面的法向量,計算夾角得到答案.()設(shè),計算,根據(jù)垂直關(guān)系得到答案.【詳解】()連結(jié),則四邊形為平行四邊形.平面.()平面,四邊形為正方形.所以,兩兩垂直,建立如圖所示坐標(biāo)系,則,設(shè)平面

15、法向量為,則,連結(jié),可得,又所以,平面,平面的法向量,設(shè)二面角的平面角為,則.()線段上存在點使得,設(shè),所以點為線段的中點.【點睛】本題考查了線面平行,二面角,根據(jù)垂直關(guān)系確定位置,意在考查學(xué)生的計算能力和空間想象能力.19(1),;(2).【解析】(1)利用公式即可求得曲線的極坐標(biāo)方程;聯(lián)立直線和曲線的極坐標(biāo)方程,即可求得交點坐標(biāo);(2)設(shè)出點坐標(biāo)的參數(shù)形式,將問題轉(zhuǎn)化為求三角函數(shù)最值的問題即可求得.【詳解】(1)曲線的極坐標(biāo)方程: 聯(lián)立,得,又因為都滿足兩方程,故兩曲線的交點為,.(2)易知,直線. 設(shè)點,則點到直線的距離(其中). 面積的最大值為.【點睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程

16、之間的相互轉(zhuǎn)化,涉及利用橢圓的參數(shù)方程求面積的最值問題,屬綜合中檔題.20(1)證明見解析 (2)【解析】(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因為平面ABC,所以 因為.所以.即 又.所以平面 因為平面.所以平面平面 (2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,則,所以 設(shè)平面的一個法向量為,由.得令,得 又平面,所以平面的一個法向量為. 所以二面角的余弦值為.【點睛】本題主要考查空間幾何位置關(guān)系的證明,考查二面

17、角的計算,意在考查學(xué)生對這些知識的理解掌握水平.21(1)見解析;(2)【解析】(1)先判斷得到隨機變量的所有可能取值,然后根據(jù)古典概型概率公式和組合數(shù)計算得到相應(yīng)的概率,進而得到分布列和期望(2)由于去掉年的數(shù)據(jù)后不影響的值,可根據(jù)表中數(shù)據(jù)求出;然后再根據(jù)去掉年的數(shù)據(jù)后所剩數(shù)據(jù)求出即可得到回歸直線方程【詳解】(1)由數(shù)據(jù)可知,五個年份考核優(yōu)秀由題意的所有可能取值為,故的分布列為:所以(2)因為,所以去掉年的數(shù)據(jù)后不影響的值,所以又去掉年的數(shù)據(jù)之后,所以,從而回歸方程為:【點睛】求線性回歸方程時要涉及到大量的計算,所以在解題時要注意運算的合理性和正確性,對于題目中給出的中間數(shù)據(jù)要合理利用本題考查概率和統(tǒng)計的結(jié)合,這也是高考中常出現(xiàn)的題型,屬于基礎(chǔ)題22(1)見解析(2)【解析】(1)第(1)問,連交于,連接.證明/ ,即證平面. (2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論