三角形的中線、角平分線2_第1頁
三角形的中線、角平分線2_第2頁
三角形的中線、角平分線2_第3頁
三角形的中線、角平分線2_第4頁
三角形的中線、角平分線2_第5頁
全文預覽已結(jié)束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、PAGE PAGE 54.1認識三角形(3)教學目標1經(jīng)歷探索三角形內(nèi)角平分線及三角形中線的過程,掌握其定義及性質(zhì),培養(yǎng)學生簡單推理能力。2通過折紙和畫圖等方法認識三角形的中線、角平分線及其性質(zhì)。3通過經(jīng)歷探索過程,認識三角形角平分線及中線定義,同時發(fā)展他們的空間觀念。教學重點掌握三角形內(nèi)角平分線及三角形中線的定義和性質(zhì)。教學難點培養(yǎng)學生簡單推理能力,發(fā)展學生的空間觀念。教學過程(教師)學生活動設計思路1.復習導入什么樣的圖形叫三角形?三角形的三條邊有什么關系呢?三個角呢?ABC中,有一條紅色線段,一端點在頂點A處,另一端點從點B沿著BC邊移動到點C,觀察移動過程中形成的無數(shù)條線段(AD,AE

2、,AF,AG,)中,有沒有特殊位置的線段?你認為有哪些特殊位置?教師承接學生的回答,點明本節(jié)課的學習主題探討三角形的角平分線和中線。1.在三角形中,連接一個頂點與它對邊的中點的線段,叫做這個三角形的中線。如圖,取ABC邊BC的中點D,連結(jié)AD,線段AD就是ABC的一條中線;也稱AD為邊BC上的中線在三角形中,連接一個頂點與它對邊中點的線段,叫做三角形的中線強調(diào):三角形的中線是一條線段;為了區(qū)分中線,我們將線段AD叫做BC邊上的中線思考:(1)AD是ABC 中BC邊上的中線,則BD_CDBC(填“”、“”或“”)(2)若BDCD,則AD是_(3)ABD與ACD的面積之間有什么關系?2. 在三角形

3、中,一個內(nèi)角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。如圖,線段AE平分BAC交邊BC于點E,我們把線段AE叫做ABC中BAC的角平分線在三角形中,一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線感悟:三角形的一個內(nèi)角的平分線一定與它的對邊相交三角形的角平分線是一條線段而不是射線,它與一個角的平分線不同幾何語言:AE是ABC 中BAC的角平分線, 提問:(1)用折紙的方法折出三角形的三個角的平分線,你有什么發(fā)現(xiàn)?(2)利用量角器和直尺畫出ABC 中的角平分線(3)在每個三角形中,三條角平分線之間有什么特點?將你的結(jié)果與同伴進行交

4、流學生通過觀察、思考、交流,可以歸納出三角形的角平分線和中線?;顒觾?nèi)容:1.(1)要求同學們動手來做一做:在一張薄紙上任意畫一個三角形,你能設法畫出它的三條中線嗎? 你能通過折紙的方法得到它嗎?(2).每人準備銳角三角形、鈍角三角形和直角三角形紙片各一個。2.(1) 你能分別畫出這三個三角形的三條中線嗎?(2) 你能用折紙的辦法得到它們嗎?(3) 在每個三角形中,這三條中線之間有怎樣的位置關系?3. 學生通過中線的定義很容易回答問題:(1)AD是ABC 中BC邊上的中線,則BDCDBC(2) 若BDCD,則AD是ABC 中BC邊上的中線對于思考(3)部分學生可能直接不能得到答案,教師可做適當?shù)?/p>

5、提示:“等底同高”學生自己動手操作,畫任意一個三角形三邊的中線,觀察三條中線的特點在黑板上展示學生的作品學生自己動手操作,畫一個自己喜歡的三角形(班里的學生應該會出現(xiàn)銳角三角形、直角三角形、鈍角三角形3種情況),觀察三條角平分線交點的情況展示學生的作品在復習回顧的基礎上提出新的問題供學生觀察與思考,在學生的回答中自然引入新課。以問題串的形式層層遞近揭示本節(jié)課的知識體系。用類比的方法研究三角形的中線,鼓勵學生先猜測再驗證,對學生的空間觀念提出更高要求。創(chuàng)設“操作思考交流”活動,學生用數(shù)學語言描述有一定的難度,教學時注意強化活動過程,增強學生對問題的感悟師生共同合作,引導學生自己歸納得出結(jié)論:“三

6、角形的中線共有3條”“三角形的3條中線相交于三角形內(nèi)一點”“三角形的中線將這個三角形分成面積相等的兩部分”畫一個角的平分線,學生已掌握的方法有2種:用量角器和直尺畫已知角的平分線;用折紙的方法折出已知角的平分線,學生觀察折痕的交點更加直觀、生動通過操作、觀察學生很容易得出結(jié)論 “三角形的角平分線共有3條”“三角形的3條角平分線相交于三角形內(nèi)部一點”實踐探索:問題1如圖,在ABC中,E是AC的中點,A的平分線分別交BE、BC于點F、D指出圖中哪條線段是哪個三角形的角平分線,哪條線段是哪個三角形的中線 問題1學生積極性、參與性應該很高,容易得出答案:AD是ABC的角平分線,AF是ABE的角平分線;BE是ABC的中線,DE是ADC的中線設計問題1的目的:一是培養(yǎng)學生的識圖能力;二是鞏固了三角形的中線、角平分線、高的概念考查了學生解決問題的綜合能力,又讓學生在實踐中體驗“學以致用”的道理小結(jié):通過今天的學習,你知道什么是三角形的中線、角平分線和高?通過畫圖,你發(fā)現(xiàn)三角形的中線、角平分線、各有怎樣的特征?通過這節(jié)課的學習,你能感悟“從復雜的圖形中分解出簡單的圖形”的思考過程嗎?談談你的收獲共同小結(jié),交流體會師生互動,總結(jié)學習成果,體驗成功課后作業(yè):1課本P88習題4.1第1.2題;2思考題(選做):如圖,AF、AD分別是ABC的高和角平分線,且B36,C66

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論