下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、第五講幾何經(jīng)典模型(3)1.如圖, CACM 和 BCN ,連 AN 、 BM ,若段 AB 上,在 AB 的同側(cè)作等邊三角形MBN 38 ,求ANB 的度數(shù).如圖,等邊三角形ABC 與等邊DEC 共頂點于C 點求證: AE BD 2.AEDBC3.如圖,四邊形 ABCD 、 DEFG 都是正方形,連接 AE 、CG 求證: AE CG GFABEDC何( 1 / 54.如圖,在 ABC 外面作正方形 ABEF 與 ACGH , AD 為 ABC 的高,其反向延長線交 FH 于M ,求證:(1) BH CF ;(2) MF MHFMHAEGBCD5.以ABC 的兩邊 AB、AC 為邊向外作正方
2、形 ABDE、ACFG,求證:CE=BG,且 CEBGGEAFODCB【一線三等角】6.如圖, ABC 是等邊三角形,點 D, E, F 分別是線段 AB, BC,CA 上的點,若DEF 為等邊三角形,問 AD BE CF 成立嗎?試證明你的結(jié)論。7.ABC 中, ACB 90 , AC BC ,直線 MN 經(jīng)過點C , AD MN 于點 D , BE MN 于點 E ,(1) 當(dāng)直線 MN 旋轉(zhuǎn)到圖(1)的位置時,猜想線段 AD, BE, DE 的數(shù)量關(guān)系,并證明你的猜想;幾何經(jīng)典模型(3) 2 / 5(2) 當(dāng)直線 MN 旋轉(zhuǎn)到圖(2)的位置時,猜想線段 AD, BE, DE 的數(shù)量關(guān)系,
3、并證明你的猜想;(3) 當(dāng)直線 MN 旋轉(zhuǎn)到圖(3)的位置時,猜想線段 AD, BE, DE 的數(shù)量關(guān)系,并證明你的猜想。已知:如圖,以 ABC 的頂點 A 為直角頂點,AC 和 BC 為直角邊向 ABC 形外作等腰 RtABD8.和 Rt ACE ,連結(jié) DE ,自 A 向 BC 作垂線 AH ,垂足為 H ,延長 HA 交 DE 于 M ,求證:M 是 DE的中點【截長補短】9.已知:如圖,ABCD 是正方形, FAD FAE .求證: BE DF AE 。何( ) 3 / 5ADFBCE如圖,已知等腰 RtABC 中,B=90. BAC 的平分線交 BC 于 E,求證 AB+BE=AC.
4、【解答】證明:延長 AB 至 F 使 AFAC,連結(jié) EF. 易證AFEACE,所以AFAC,F(xiàn)ACEAC是正方形ABCD的對角線,ACE45F45又CBAB,所以FBE90,BEF45BEBF,ACAFAB+BFAB+BE.如圖,正方形ABCD, 1 2 ,Q 在 DC 上,P 在 BC 上。求證:PA=PB+DQ。12. 如圖,正方形ABCD 的邊長為 1,AB、AD 上各有一點P、Q,如果APQ 的周長為 2,求PCQ的度數(shù)。幾何經(jīng)典模型(3) 4 / 51.如圖,B ,C ,E 三點共線,且ABC 與DCE 是等邊三角形,連結(jié) BD , AE 分別交 AC ,DC 于M , N 點求證: CM CN ADMNBEC2.如圖, ABC 中,AB=AC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB51T 1623-2013 政務(wù)服務(wù)中心 一次性告知規(guī)范
- DB51T 1123-2010 重口裂腹魚養(yǎng)殖技術(shù)規(guī)范 食用魚
- DB51T 636-2014 西瓜生產(chǎn)技術(shù)規(guī)程
- 新建野外過流分配器+項目立項申請報告
- 勻染劑系列項目可行性研究報告
- xxx汽車柴油濾清器項目可行性報告
- 包裝用紙項目實施方案
- 最優(yōu)估計課程設(shè)計背景
- 2024土地占用工程水土保持與恢復(fù)協(xié)議3篇
- 2024-2030年新版中國高壓注射造影劑針筒項目可行性研究報告
- 現(xiàn)代藥物制劑與新藥研發(fā)智慧樹知到答案2024年蘇州大學(xué)
- 湖南省郴州市2023-2024學(xué)年三年級上學(xué)期期末考試科學(xué)試題
- 《智慧體育競技科技助力新突破》演講課件
- 《登岳陽樓》課件+2023-2024學(xué)年統(tǒng)編版高中語文必修下冊
- 新進高校教師工作計劃
- 2024年人教版初一生物(上冊)期末試卷及答案(各版本)
- 中考英語688高頻詞大綱詞頻表
- 《馬克思主義發(fā)展史》題集
- 人教新目標(biāo)版英語七下Unit 11《How was your school trip》(Section A 1a-1c)教學(xué)設(shè)計
- 大話機器人智慧樹知到期末考試答案章節(jié)答案2024年青海大學(xué)
- 含新能源發(fā)電接入的電力系統(tǒng)低頻振蕩阻尼控制研究綜述
評論
0/150
提交評論