2021-2022學年吉林省遼源市高考沖刺數(shù)學模擬試題含解析_第1頁
2021-2022學年吉林省遼源市高考沖刺數(shù)學模擬試題含解析_第2頁
2021-2022學年吉林省遼源市高考沖刺數(shù)學模擬試題含解析_第3頁
2021-2022學年吉林省遼源市高考沖刺數(shù)學模擬試題含解析_第4頁
2021-2022學年吉林省遼源市高考沖刺數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1若集合,則( )ABCD2已知函數(shù)(其中,)的圖象關(guān)于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:直線是函數(shù)圖象的一條對稱軸;點是函數(shù)的一個對稱中心;函數(shù)與的圖象的所有交點的橫坐標之和為.其中正確的判斷是( )ABCD3已知隨機變量服從正態(tài)分布,且,則( )ABCD4小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于( )ABCD5已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四

3、個面中,最大面積為( )ABCD6已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是( )ABCD7ABC中,AB3,AC4,則ABC的面積是( )ABC3D8已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,且,則此三棱錐外接球表面積的最小值為( )ABCD9設復數(shù)滿足,在復平面內(nèi)對應的點為,則不可能為( )ABCD10已知復數(shù),其中為虛數(shù)單位,則( )ABC2D11若復數(shù)滿足,則( )ABCD12已知點、若點在函數(shù)的圖象上,則使得的面積為的點的個數(shù)為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在區(qū)間內(nèi)任意取一個數(shù),則恰好為非負

4、數(shù)的概率是_.14設為橢圓在第一象限上的點,則的最小值為_.15已知實數(shù),對任意,有,且,則_.16在直三棱柱內(nèi)有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)設數(shù)列an的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列an(2)設cn=bnan,求數(shù)列18(12分)己知,.(1)求證:;(2)若,求證:.19(12分)記為數(shù)列的前項和,已知,等比數(shù)列滿足,.(1)求的通項公式;(2)求的前項和.20(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的

5、一個特征向量.21(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.22(10分)某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結(jié)果及對應的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概

6、率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學期望參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】先確定集合中的元素,然后由交集定義求解【詳解】,.故選:A【點睛】本題考查求集合的交集運算,掌握交集定義是解題關(guān)鍵2C【解析】分析:根據(jù)最低點,判斷A=3,根據(jù)對稱中心與最低點的橫坐標求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否詳解:因為為對稱中心,且最低點為,所以A=3,且 由 所以,將帶入得 ,所以由此可

7、得錯誤,正確,當時,所以與 有6個交點,設各個交點坐標依次為 ,則,所以正確所以選C點睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進一步研究函數(shù)的性質(zhì),屬于中檔題3C【解析】根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解【詳解】,故選:C【點睛】本題考查正態(tài)分布的應用掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ)隨機變量服從正態(tài)分布,則4D【解析】這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應位于五邊形內(nèi),作圖如下:故選:D【點睛】考查幾何概型,是基礎(chǔ)題.5B【解析】由三視圖可知,該三棱錐如圖, 其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個面的面積即可.【詳解】

8、由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B【點睛】本題考查三視圖還原幾何體并求其面積; 考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.6A【解析】建立平面直角坐標系,求出直線,設出點,通過,找出與的關(guān)系通過數(shù)量積的坐標表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設,則直線 , 設點, 所以 由得 ,即 ,所以,由及

9、,解得,由二次函數(shù)的圖像知,所以的取值范圍是故選A【點睛】本題主要考查解析法在向量中的應用,以及轉(zhuǎn)化與化歸思想的運用7A【解析】由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.8B【解析】根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,此三棱錐的外

10、接球即為長方體的外接球,且球半徑為,三棱錐外接球表面積為,當且僅當,時,三棱錐外接球的表面積取得最小值為故選B【點睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題9D【解析】依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經(jīng)驗證不滿足,故選:D.【點睛】本題主要考查了復數(shù)的概念、復數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.10D【解析】把已知等式變形

11、,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎(chǔ)題.11C【解析】化簡得到,再計算復數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.12C【解析】設出點的坐標,以為底結(jié)合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設點的坐標為,直線的方程為,即,設點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,解得或或.綜上,滿足條件的點共有三個故選:

12、C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題二、填空題:本題共4小題,每小題5分,共20分。13【解析】先分析非負數(shù)對應的區(qū)間長度,然后根據(jù)幾何概型中的長度模型,即可求解出“恰好為非負數(shù)”的概率.【詳解】當是非負數(shù)時,區(qū)間長度是,又因為對應的區(qū)間長度是,所以“恰好為非負數(shù)”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關(guān)鍵是能判斷出目標事件對應的區(qū)間長度.14【解析】利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導數(shù)、單調(diào)性和極值,即可得到所求

13、最小值【詳解】解:設點,其中,由,可設,導數(shù)為,由,可得,可得或,由,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時,函數(shù)取得最小值,且為,則的最小值為1故答案為:1【點睛】本題考查橢圓參數(shù)方程的應用,利用三角函數(shù)的恒等變換和導數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運算能力,屬于難題15-1【解析】由二項式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解【詳解】由,且,則,又,所以,令得:,所以,故答案為:【點睛】本題考查了二項式定理及展開式系數(shù)的求法,意在考查學生對這些知識的理解掌握水平16【解析】先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,, 設

14、球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內(nèi)切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)an=(2)Tn【解析】(1)利用an與Sn的遞推關(guān)系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數(shù)列bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關(guān)系an=Sn-18(

15、1)證明見解析(2)證明見解析【解析】(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.19(1)(2)當時,;當時,.【解析】(1)利用數(shù)列與的關(guān)系,求得;(2)由(1)可得:,算出公比,利用等比數(shù)列的前項和公式求出.【詳解】(1)當時,當時,因為適合上式,所

16、以.(2)由(1)得,設等比數(shù)列的公比為,則,解得,當時,當時,.【點睛】本題主要考查數(shù)列與的關(guān)系、等比數(shù)列的通項公式、前項和公式等基礎(chǔ)知識,考查運算求解能力.20特征值為1,特征向量為【解析】設出矩陣M結(jié)合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設矩陣M,則AM,所以,解得,所以M,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x0,所以屬于特征值的的一個特征向量為【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關(guān)鍵是明確其運算規(guī)則,側(cè)重考查數(shù)學運算的核心素養(yǎng).21(1)(2)3+3【解析】(1)利用余弦的二倍角公

17、式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0A,可求A的值(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長【詳解】(1) ,即 又 (2) , ,由余弦定理得 a2b2+c22bccosA, , c0,所以得c=2, 周長a+b+c=3+3【點睛】本題考查三角函數(shù)恒等變換的應用,正弦定理,余弦定理在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于中檔題22(1)64,65;(2);(3).【解析】(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);(2)設“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;(3)從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,其中“不合格”的學生數(shù)為,“合格”的學生數(shù)為6;由題意可得,5,10,15,1,利用“超幾何分布”的計算公式即可得出概率,進而得出分布列與數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論