【初中數(shù)學(xué)】圓課件_第1頁
【初中數(shù)學(xué)】圓課件_第2頁
【初中數(shù)學(xué)】圓課件_第3頁
【初中數(shù)學(xué)】圓課件_第4頁
【初中數(shù)學(xué)】圓課件_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、圓知識(shí)點(diǎn)復(fù)習(xí)初三總復(fù)習(xí)天馬行空官方博客:/tmxk_docin ;QQ:1318241189;QQ群:175569632圓知識(shí)點(diǎn)點(diǎn)的軌跡三種位置關(guān)系垂徑定理圓心角定理圓周角定理弦切角定理圓的內(nèi)接四邊形定理切線的性質(zhì)與判定定理切線長定理相交弦定理兩圓公共弦定理圓的公切線圓內(nèi)正多邊形弧長、扇形面積公式側(cè)面展開圖點(diǎn)的軌跡 圓:圓可以看作是到定點(diǎn)的距離等于定長的點(diǎn)的集合; 圓的外部:可以看作是到定點(diǎn)的距離大于定長的點(diǎn)的集合; 圓的內(nèi)部:可以看作是到定點(diǎn)的距離小于定長的點(diǎn)的集合 1、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡是:以定點(diǎn)為圓心,定長為半徑的圓; 2、到線段兩端點(diǎn)距離相等的點(diǎn)的軌跡是:線段的中垂線; 3

2、、到角兩邊距離相等的點(diǎn)的軌跡是:角的平分線; 4、到直線的距離相等的點(diǎn)的軌跡是:平行于這條直線且到這條直線的距離等于定長的兩條直線; 5、到兩條平行線距離相等的點(diǎn)的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線集合:軌跡:三種位置關(guān)系點(diǎn)與圓直線與圓圓與圓直線與圓的位置關(guān)系直線與圓相離 dr 無交點(diǎn) 直線與圓相切 d=r 有一個(gè)交點(diǎn) 直線與圓相交 dR+r外切(圖2) 有一個(gè)交點(diǎn) d=R+r相交(圖3) 有兩個(gè)交點(diǎn) R-rdR+r內(nèi)切(圖4) 有一個(gè)交點(diǎn) d=R-r內(nèi)含(圖5) 無交點(diǎn) dR-r圓心角定理圓心角定理:同圓或等圓中,相等的圓心角所對(duì)的弦相等,所對(duì)的弧相等,弦心距相等 此

3、定理也稱1推3定理,即上述四個(gè)結(jié)論中,只要知道其中的1個(gè)相等,則可以推出其它的3個(gè)結(jié)論 也即:AOB=DOE AB=DE OC=OF 或 圓周角定理圓周角定理:同一條弧所對(duì)的圓周角等于它所對(duì)的圓心的角的一半即:AOB和ACB是 所對(duì)的圓心角和圓周角 AOB=2ACB圓周角定理的推論:推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧是等弧即:在O中,C、D都是所對(duì)的圓周角 C=D推論2:半圓或直徑所對(duì)的圓周角是直角;圓周角是直角所對(duì)的弧是半圓,所對(duì)的弦是直徑即:在O中,AB是直徑 或C=90 C=90 AB是直徑推論3:三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角

4、三角形即:在ABC中,OC=OA=OB ABC是直角三角形或C=90注:此推論實(shí)是初二年級(jí)幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。弦切角定理弦切角定理:弦切角等于所夾弧所對(duì)的圓周角 推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等。即:MN是切線,AB是弦 BAM=BCA圓內(nèi)接四邊形圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角。 即:在O中, 四邊形ABCD是內(nèi)接四邊形 C+BAD=180 B+D=180 DAE=C切線的性質(zhì)與判定定理(1)判定定理:過半徑外端且垂直于半徑的直線是切線 兩個(gè)條件:過半徑外端且垂直半徑,二者缺一不可 即:M

5、NOA且MN過半徑OA外端 MN是O的切線(2)性質(zhì)定理:切線垂直于過切點(diǎn)的半徑(如上圖) 推論1:過圓心垂直于切線的直線必過切點(diǎn) 推論2:過切點(diǎn)垂直于切線的直線必過圓心以上三個(gè)定理及推論也稱二推一定理:即:過圓心 過切點(diǎn) 垂直切線中知道其中兩個(gè)條件推出最后一個(gè)條件 MN是切線 MNOA切線長定理切線長定理: 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,這點(diǎn)和圓心的連線平分兩條切線的夾角。即:PA、PB是的兩條切線 PA=PB PO平分BPA兩圓公共弦定理圓公共弦定理:連心線垂直平分公共弦 即:O1、O2相交于A、B兩點(diǎn) O1O2垂直平分AB圓的公切線兩圓公切線長的計(jì)算公式:(1)公切線長:在RtO1O2C中,(2)外公切線長:CO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論