




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、中北大學理學院實驗報告實驗課程:數(shù)據(jù)分析專 業(yè):信息與計算科學班 級: 13080241學 號:1308024101姓 名: 潘娟中北大學理學院實驗三美國50個州七種犯罪比率的數(shù)據(jù)分析【實驗目的】通過使用SAS軟件對實驗數(shù)據(jù)進行主成分分析和因子分析,熟 悉數(shù)據(jù)分析方法,培養(yǎng)學生分析處理實際數(shù)據(jù)的綜合能力?!緦嶒瀮?nèi)容】表3給出的是美國50個州每100 000個人中七種犯罪的比率數(shù)據(jù)。這七種犯罪是:Murder (殺人罪),Rape (強奸罪),Robbery (搶劫罪), Assault(斗毆罪),Burglary (夜盜罪),Larceny (偷盜罪),Auto (汽車犯罪)。表3美國50個州
2、七種犯罪的比率數(shù)據(jù)StateMurderRapeRobberyAssaultBurglaryLarcenyAutoAlabama14.225.296.8278.31135.51881.9280.7Alaska10.851.696.8284.01331.73369.8753.3Arizona9.534.2138.2312.32346.14467.4439.5Arkansas8.827.683.2203.4972.61862.1183.4California11.549.4287.0358.02139.43499.8663.5Colorado6.342.0170.7292.91935.23903.
3、2477.1Connecticut4.216.8129.5131.81346.02620.7593.2Delaware6.024.9157.0194.21682.63678.4467.0Florida10.239.6187.9449.11859.93840.5351.4Georgia11.731.1140.5256.51351.12170.2297.9Hawaii7.225.5128.064.11911.53920.4489.4Idaho5.519.439.6172.51050.82599.6237.6Illinois9.921.8211.3209.01085.02828.5528.6Indi
4、ana7.426.5123.2153.51086.22498.7377.4Iowa2.310.641.289.8812.52685.1219.9Kansas6.622.0100.7180.51270.42739.3244.3Kentucky123.3872.21662.1245.4Louisiana15.530.9142.9335.51165.52469.9337.7Maine2.413.538.7170.01253.12350.7246.9Maryland8.034.8292.1358.91400.03177.7428.5Massachusetts3.120.8169
5、.1231.61532.22311.31140.1Michigan9.338.9261.9274.61522.73159.0545.5Minnesota2.719.585.985.81134.72559.3343.1Mississippi14.319.665.7189.1915.61239.9144.4Missouri9.628.3189.0233.51318.32424.2378.4Montana5.416.739.2156.8804.92773.2309.2Nebraska3.918.164.7112.7760.02316.1249.1Nevada15.849.1323.1355.0245
6、3.14212.6559.2New Hampshire3.210.723.276.01041.72343.9293.4New Jersey5.621.0180.4185.11435.82774.5511.5New Mexico8.839.1109.6343.41418.73008.6259.5New York10.729.4472.6319.11728.02782.0745.8North Carolina10.617.061.3318.31154.12037.8192.1Ohio7.827.3190.5181.11216.02696.8400.4North Dakota0.99.013.343
7、.8446.11843.0144.7Oklahoma8.629.273.8205.01288.22228.1326.8Oregon4.939.9124.1286.91636.435061388.9Pennsylvania5.619.0130.3128.0877.51624.1333.2Rhode Island3.610.586.5201.01489.52844.1791.4South Carolina11.933.0105.9485.31613.62342.4245.1South Dakota2.013.517.9155.7570.51704.4147.5Tennessee10.129.714
8、5.8203.91259.71776.5314.0Texas13.333.8152.4208.21603.12988.7397.6Utah3.520.368.8147.31171.63004.6334.5Vermont1.415.930.8101.21348.22201.0265.2Virginia9.023.392.1165.7986.22521.2226.7Washington4.339.6106.2224.81605.63386.9360.3West Virginia6.013.242.290.9597.41341.7163.3Wisconsin2.812.952.263.7846.92
9、614.2220.7Wyoming5.421.939.7173.9811.62772.2282.01、1)分別用樣本協(xié)方差矩陣和樣本相關(guān)矩陣作主成分分析,二者的結(jié)果有何差異?2)原始數(shù)據(jù)的變化可否由三個或者更少的主成分反映,對所選取的主成分給 出合理的解釋。3)計算從樣本相關(guān)矩陣出發(fā)計算的第一樣本主成分的得分并予以排序.2、從樣本相關(guān)矩陣出發(fā),做因子分析?!緦嶒炈褂玫膬x器設(shè)備與軟件平臺】SAS軟件【實驗方法與步驟】(闡述實驗的原理、方案、方法及完成實驗的具體步驟等,附上自己編寫的程序)1.1)主成分分析樣本協(xié)方差矩陣proc princomp data=work.crime covarian
10、ce;run;樣本相關(guān)矩陣proc princomp data=work.crime;run;3)計算從樣本相關(guān)矩陣出發(fā)計算的第一樣本主成分的得分并予以排序.proc princomp data=crime out=defen; run;proc sort data=defen;by prinl;run;proc print data=defen;run;2.從樣本相關(guān)矩陣出發(fā),做因子分析。proc factor data=work.crime score; run;【實驗結(jié)果】1.1)分別用樣本協(xié)方差矩陣和樣本相關(guān)矩陣作主成分分析,二者的結(jié)果有何差 異?樣本協(xié)方差矩陣各變量的均值及其標準差:
11、The PRINCOMP ProcedureUbserYat i ons50Ya r i abIes7Si rnp I e Stat ist icsMurderRapeRobberyAssau1tBurglaryLa rcenyAutoMean7.44400000025.73400000124.0920000211.30000001291.9040003302.386000377.5260000StD3.86676894110.7596299588.3485672100.2530492432.4557114638.575008193.3944175樣本協(xié)方差矩陣:Covar i ance Ma
12、t r i :::MurderRapeRobberyAssauItBurg 1 aryLarcenyAutoMurderMurder14.9525.01165.25251.41645.17-1352.2051.46RapeRape25.01115.77562.64798.513313.5913918.15726.01RobberyRobbery165.25562.647805.474934.1624347.0028655.9210092.42AssauItAssauIt251.41798.514934.1610050.6727006.2078112.075348.14Burg I aryBn
13、rg I a ry645.173313.5924347.0027006.20187017.94470512.9946664.15LarcenyLa rceny-1352.2013918.1528655.9278112.07470512.9921516378.1169681.55AutoAuto51.46726.0110092.425348.1446664.1569681.5537401.40樣本協(xié)方差矩陣的特殊指標:特征值、差額、貢獻率、累計貢獻率Total Variance 21758784.312EigenvaIues of the Covariance MatrixEigenvalueD
14、ifferenceProport ionCumulat ive121527321.621330145.00.98940.98942197176.6172678.30.00910.9984324498.417744.00.00110.999646754.33765.70.00030.999952988.62950.10.00011.0000638.532.20.00001.000076.30.00001.0000可以得出主成分為Murder (殺人罪)。EigenvectorsPrinlPrin2PrinSPrin4Prin5Print;Prin?MurderMurder-.0000620.11
15、03595-.0059000.0253860.0039770.1574100.987175RapeRape0.0006500.016206-.0089080.047612-.0041490.986021-.158545RobberyRobbery0.0013590.1359900.1319940.4646410.864629-.021719-.011675Assau1tAssau1t0.0036580.137992-.1138860.863075-.469548-.049145-.013649BurglaryBurglary0.0220560.940376-.281253-.189782-.0
16、03217-.0086720.001172LarcenyLarceny0.999743-.0223620.0033410.0004230.001205-.0002470.000188AutoAuto0.0032910.2781780.943599-.016789-.1785960.0048160.005010Larceny (偷盜罪)與Murder (殺人罪)高度相關(guān),Burglary (夜盜罪)與Rape(強奸罪)高度相關(guān),Robbery (搶劫罪)與Auto (汽車犯罪)高度相關(guān),Robbery (搶劫罪)與Larceny (偷盜罪)高度相關(guān),Murder (殺人罪)與Auto(汽車犯罪)
17、高度相關(guān)。樣本相關(guān)矩陣201606月01日 星期三 上午。8時58分02杪12The PRINCOMP Procedure507Ubservat i ons Va r i abIesS i mpIe Stat i st i csMurderRapeRobberyAssauItBurglaryLa rcenyiutoilean7.444000UUU25.73400000124.0920000211.30000001291.9040003302.386000377.5260000StD3.86676894110.7596299588.3485672100.2530492432.4557114638
18、.575008193.3944175Correlation Matri:MurderRapeRobberyAssau1tBurglaryLarcenyAutoMurderMurder1.00000.60120.48370.64860.3858-.07540.0688RapeRape0.60121.00000.59190.74080.71210.27890.3489RobberyRobbery0.48370.59191.00000.55710.63720.06990.5907Assau1tAssau1t0.64860.74030.55711.00000.62290.16800.2758Burgl
19、aryBurglary0.38580.71210.68720.62291.00000.23460.5580LarcenyLa rceny-.07540.27890.06990.1680LI.284E:1.00000.0777AutoAuto0.0G880.34890.59070.27580.55800.07771.0000EigenvaIues of the Correlat ion MatrixEigenva1ueDifferenceProport ionCumulat ive13.707457882.563374880.52960.529621.144083000.123506800.16
20、340.693131.020576200.635575110.14580.838940.385001100.107103210.05500.893950.277897890.023078740.03970.933660.254819150.044654370.03640.970070.210164780.03001 .0000可以看出主成分為Murder(殺人罪),Rape(強奸罪),Robbory(搶劫罪)。E i genvectorsPrin1Prin2Prin8Prin4PrinbPrint;Prin7MurderMurder0.348772-.5882470.0863510.36738
21、20.0734860.5017910.364284RapeRape0.456744-.0687280.222472-.238040-.1561600.305460-.750208RobberyRobbery0.4242980.071135-.3022560.596935-.389075-.446584-.128080Assau1tAssauIt0.435534-.2336390.189765-.2236540.580589-.5736570.059380BurglaryBurglary0.4421700.208589-.045298-.531074-.4613850.0289600.51300
22、1LarcenyLarceny0.1222050.5453330.7360500.3412020.0651340.0621920.146218AutoAuto0.2992940.498695-.5214010.0596400.5144240.348818-.002066各成分間沒有很高的相關(guān)性,沒有兩個成分的相關(guān)度達到0.9以上。Robbory(搶劫罪)與Larceny(偷盜罪)的相關(guān)系數(shù)為0.736050Rape(強奸罪)與Auto (汽車犯罪)的相關(guān)系數(shù)為0.750208兩者的差別:主成分發(fā)生了變化。用樣本協(xié)方差矩陣求得主成分為Murder (殺人罪)用樣本相關(guān)矩陣求得主成分為Murder
23、(殺人罪),Rape(強奸罪),Robbory(搶劫 罪)。各成分間的相關(guān)系數(shù)不不相同。所以由樣本協(xié)方差矩陣,樣本相關(guān)矩陣求得的主成分一般是不同的。2)原始數(shù)據(jù)的變化可否由三個或者更少的主成分反映,對所選取的主成分給出 合理的解釋。用樣本協(xié)方差矩陣求出的主成分Murder (殺人罪),它的貢獻率為98.94% 可以用它來代替其他六個變量,其信息損失量是很小的。用樣本相關(guān)矩陣求出的主成分為Murder(殺人罪),Rape(強奸罪), Robbory(搶劫罪)。Murder(殺人罪)的貢獻率為52.96%,Murder(殺人罪)和 Rape(強奸罪)的累計貢獻率為69.31%,Murder(殺人罪
24、),Rape(強奸罪), Robbory(搶劫罪)三個的累計貢獻率為83,89%。可以用這三個主成分來代替7個 原始變量,而且也不至于損失原始變量中的太多信息。3)計算從樣本相關(guān)矩陣出發(fā)計算的第一樣本主成分的得分并予以排序.ObsStateMurder RapeRobberyAssauItBurglaryLarceny1North Dakota0.99.013.343.8446.11843.02South Dakota2.013.517.9155.7570.51704.43Iowa2.310.641.209.8812.52685.14West Virginia6.013.242.290.959
25、7.41341.75Wisconsin2.812.952.263.7846.92614.26New Hampsh i re3.210.723.276.01041.72343.97Nebraska3.918.164.7112.7760.02316.18Vermont1.415.930.8101.21348.22201.09Maine2.413.538.7170.01253.12350.710Montana5.416.739.2156.8804.92773.211Minnesota2.719.585.905.81134.72559.312Wyoming5.421.939.7173.9811.627
26、72.213Idaho5.519.439.6172.51050.82599.614Utah3.520.368.8147.31171.63004.615Pennsylvania5.619.0130.3128.0877.51624.116Kentucky123.3872.21662.117Virginia9.023.392.1165.7986.22521.218Mississippi14.319.665.7109.1915.61239.919Kansas6.622.0100.7100.51270.42739.320Arkansas8.827.683.2203.4972.61
27、862.121Connect i cut4.216.8129.5131.81346.02620.722Indiana7.426.5123.2153.51086.22498.723Rhode Island3.610.586.5201.01489.52844.124North Carol ina10.617.061.3318.31154.12037.825Ok 1ahoma8.629.273.8205.01288.22228.126New Jersey5.621.0180.4105.11435.82774.527Hawai i7.225.5128.064.11911.53920.428Ohio7.
28、827.3190.5101.11216.02696.829Tennessee10.129.7145.8203.91259.71776.530Alabama14.225.296.8278.31135.51881.931Delaware6.024.9157.0194.21682.63678.4ObsAutoPrinlPrin2Prin3Prin4Prin5PrinBPrin71144.7-3.823930.223660.054570.23310-0.10104-0.30195-0.435182147.5-2.89759-0.178570.32568-0.142600.35512-0.68348-0
29、.442533219.9-2.782710.385370.003040.05178-0.13318-0.307630.032344163.3-2.67195-0.603510.100050.49798-0.038560.10048-0.098085220.7-2.666000.37462-0.042280.13374-0.39222-0.08091-0.073776293.4-2.504580.52545-0.21564-0.23965-0.171990.125300.388427249.1-2.125890.066200.025020.19190-0.05399-0.09270-0.4345
30、98265.2-2.034240.77178-0.10537-0.92618-0.57322-0.175530.219579246.9-1.830710.405540.05359-0.75603-0.10085-0.584880.4025210309.2-1.82994-0.045980.106080.091730.480910.05630-0.0655411343.1-1.654750.77129-0.35036-0.16310-0.492570.03598-0.2407712282.0-1.56779-0.185670.31673-0.074770.422750.05493-0.41050
31、13237.6-1.50014-0.201140.33222-0.327650.07754-0.060930.0513314334.5-1.327430.53535-0.05106-0.37274-0.11351-0.11003-0.1020615333.2-1.320780.01118-0.462730.57334-0.14641-0.11540-0.3065516245.4-1.30764-0.927200.042560.65897-0.100240.588790.1748117226.7-0.88129-0.768870.322250.35070-0.144300.25240-0.049
32、9918144.4-0.81874-2.024220.5280.680600.100310.664420.6361819244.3-0.72378-0.214820.19776-0.14301-0.37654-0.170330.1546720183.4-0.68403-1.056640.522080.05518-0.062910.09002-0.3698621593.2-0.620121.24230-1.121460.053270.090190.136450.3027522377.4-0.45853-0.05824-0.197140.29525-0.134910.32650-0.3598423
33、791.4-0.388221.78449-1.50096-0.407941.137590.071210.9639724192.1-0.38399-1.417540.62093-0.150060.71097-0.493090.8593525326.8-0.12809-0.482700.22429-0.382710.010600.43253-0.1013026511.50.128880.76888-0.841330.19421-0.17061-0.264200.2118327489.40.170271.04480-0.57074-0.34414-1.225701.035790.6537628400
34、.40.228150.01087-0.393840.57096-0.34999-0.04416-0.2991929314.00.30859-0.75340-0.014440.23550-0.301580.25268-0.1477830280.70.39952-1.694610.412050.377550.533710.411980.5236831467.00.465950.75472-0.41693-0.20279-0.43204-0.006970.330642.從樣本相關(guān)矩陣出發(fā),做因子分析。燼系統(tǒng)2016The FACTOR ProcedureInput Data TypeNumber of Records ReadNumber of Records UsedN for Sign if icance TestsRaw Data505050Eigenvalues of theCorre 1 at ion Matrix: Total = 7Average = 1EigenvalueDifferenceProport ionCumulat ive13.707457882.563374880.52960.529621.144083000
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防安全培訓資料
- 二零二五版借貸分期合同
- 二手房房屋買賣定金合同范例
- 皮試配制方法操作流程
- 新采購合同9篇
- 電力行業(yè)大數(shù)據(jù)應用培訓
- 貨架隔層施工方案
- 環(huán)境因素識別培訓
- 2025年份一月智能鏡柜融資租賃合同用戶互動率考核條款
- 電表調(diào)試 施工方案
- DB12T 1361-2024 地熱尾水回灌技術(shù)規(guī)程
- 2024年中考語文復習:非連續(xù)性文本閱讀(含練習題及答案)
- 成人腦室外引流護理-中華護理學會團體 標準
- 2024年出售鋁廠鋁渣合同范本
- 地方導游基礎(chǔ)知識電子教案 專題七 學習情境一 陜西省課時教案
- 項目管理工程師招聘筆試題與參考答案(某大型集團公司)2024年
- 高中文言文實詞虛詞總集(打印版)
- 24年追覓在線測評28題及答案
- 婚禮主要工作人員及分工職責
- 醫(yī)院改造工程設(shè)計服務方案
- 職業(yè)本科《大學英語》課程標準
評論
0/150
提交評論