吉林省柳河縣2022年數(shù)學九年級上冊期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
吉林省柳河縣2022年數(shù)學九年級上冊期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
吉林省柳河縣2022年數(shù)學九年級上冊期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
吉林省柳河縣2022年數(shù)學九年級上冊期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
吉林省柳河縣2022年數(shù)學九年級上冊期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側,C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.2.如圖,△OAB∽△OCD,OA:OC=3:2,△OAB與△OCD的面積分別是S1與S2,周長分別是C1與C2,則下列說法正確的是()A. B. C. D.3.用配方法解方程x2﹣2x﹣5=0時,原方程應變形為()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=94.某種植基地2016年蔬菜產(chǎn)量為80噸,預計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1005.如圖,⊙O的半徑為2,點A的坐標為,直線AB為⊙O的切線,B為切點,則B點的坐標為()A. B. C. D.6.某超市一月份的營業(yè)額為36萬元,三月份的營業(yè)額為48萬元,設每月的平均增長率為x,則可列方程為()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=487.下列圖象能表示y是x的函數(shù)的是()A. B.C. D.8.如圖,正方形的邊長為,點在邊上.四邊形也為正方形,設的面積為,則()A.S=2 B.S=2.4C.S=4 D.S與BE長度有關9.設a、b是一元二次方程x2﹣2x﹣1=0的兩個根,則a2+a+3b的值為()A.5 B.6 C.7 D.810.的相反數(shù)是()A. B. C. D.二、填空題(每小題3分,共24分)11.不等式組x-2>0①2x-6>2②的解是________12.“國慶節(jié)”和“中秋節(jié)”雙節(jié)期間,某微信群規(guī)定,群內(nèi)的每個人都要發(fā)一個紅包,并保證群內(nèi)其他人都能搶到且自己不能搶自己發(fā)的紅包,若此次搶紅包活動,群內(nèi)所有人共收到156個紅包,則該群一共有_____人.13.如圖,在的矩形方框內(nèi)有一個不規(guī)則的區(qū)城(圖中陰影部分所示),小明同學用隨機的辦法求區(qū)域的面積.若每次在矩形內(nèi)隨機產(chǎn)生10000個點,并記錄落在區(qū)域內(nèi)的點的個數(shù),經(jīng)過多次試驗,計算出落在區(qū)域內(nèi)點的個數(shù)的平均值為6700個,則區(qū)域的面積約為___________.14.在△ABC中,∠B=45°,∠C=75°,AC=2,則BC的值為_____.15.已知一元二次方程的兩根為、,則__.16.如圖,點,,均在的正方形網(wǎng)格格點上,過,,三點的外接圓除經(jīng)過,,三點外還能經(jīng)過的格點數(shù)為.17.如圖,在平面直角坐標系中,已知經(jīng)過原點,與軸、軸分別交于、兩點,點坐標為,與交于點,則圓中陰影部分的面積為________.18.如圖,有九張分別印有如下車標的卡片(卡片中除圖案不同外,其余均相同)現(xiàn)將帶圖案的一面朝下擺放,從中任意抽取一張,抽到的是中心對稱圖形車標卡片的概率是_______.三、解答題(共66分)19.(10分)(1)解方程:x2﹣4x﹣3=0(2)計算:20.(6分)閱讀材料:求解一元一次方程,需要根據(jù)等式的基本性質,把方程轉化為的形式;求解二元一次方程組,需要通過消元把它轉化為一元一次方程來解;求解三元一次方程組,要把它轉化為二元一次方程組來解;求解一元二次方程,需要把它轉化為連個一元一次方程來解;求解分式方程,需要通過去分母把它轉化為整式方程來解;各類方程的解法不盡相同,但是它們都用到一種共同的基本數(shù)學思想——轉化,即把未知轉化為已知來求解.用“轉化”的數(shù)學思想,我們還可以解一些新的方程.例如,解一元三次方程,通過因式分解把它轉化為,通過解方程和,可得原方程的解.再例如,解根號下含有來知數(shù)的方程:,通過兩邊同時平方把它轉化為,解得:.因為,且,所以不是原方程的根,是原方程的解.(1)問題:方程的解是,__________,__________;(2)拓展:求方程的解.21.(6分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.22.(8分)如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點和點.(1)求反比例函數(shù)的解析式和點的坐標;(2)連接,,求的面積.(3)結合圖象,請直接寫出使反比例函數(shù)值小于一次函數(shù)值的自變量的取值范圍.23.(8分)化簡:24.(8分)如圖1,內(nèi)接于,AD是直徑,的平分線交BD于H,交于點C,連接DC并延長,交AB的延長線于點E.(1)求證:;(2)若,求的值(3)如圖2,連接CB并延長,交DA的延長線于點F,若,求的面積.25.(10分)“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達到196畝.(1)求該基地這兩年“早黑寶”種植面積的平均增長率;(2)市場調(diào)查發(fā)現(xiàn),當“早黑寶”的售價為20元/千克時,每天能售出200千克,售價每降價1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,同時減少庫存,已知該基地“早黑寶”的平均成本價為12元/千克,若使銷售“早黑寶”每天獲利1750元,則售價應降低多少元?26.(10分)如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且A?B?C位于點C的異側,并表示出點A1的坐標.(2)作出△ABC繞點C順時針旋轉90°后的圖形△A2B2C.(3)在(2)的條件下求出點B經(jīng)過的路徑長(結果保留π).

參考答案一、選擇題(每小題3分,共30分)1、A【解析】設,,根據(jù)反比例函數(shù)圖象上點的坐標特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式是解題的關鍵.2、A【分析】根據(jù)相似三角形的性質判斷即可.【詳解】解:∵△OAB∽△OCD,OA:OC=3:2,∴,A正確;∴,B錯誤;∴,C錯誤;∴OA:OC=3:2,D錯誤;故選:A.【點睛】本題主要考查相似三角形的性質,熟練掌握相似三角形的性質是解題的關鍵.3、C【分析】配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:由原方程移項,得x2﹣2x=5,方程的兩邊同時加上一次項系數(shù)﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故選:C.【點睛】此題考查利用配方法將一元二次方程變形,熟練掌握配方法的一般步驟是解題的關鍵.4、A【解析】利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準等量關系式,列出方程.5、D【解析】過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D,∵⊙O的半徑為2,點A的坐標為,即OC=2.∴AC是圓的切線.∵OA=4,OC=2,∴∠AOC=60°.又∵直線AB為⊙O的切線,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B點的坐標為.故選D.6、D【分析】主要考查增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設教育經(jīng)費的年平均增長率為x,然后根據(jù)已知條件可得出方程.【詳解】∵某超市一月份的營業(yè)額為36萬元,每月的平均增長率為x,∴二月份的營業(yè)額為36(1+x),三月份的營業(yè)額為36(1+x)×(1+x)=36(1+x)2.∴根據(jù)三月份的營業(yè)額為48萬元,可列方程為36(1+x)2=48.故選D.【點睛】本題考查了一元二次方程的應用,找到關鍵描述語,就能找到等量關系,是解決問題的關鍵.同時要注意增長率問題的一般規(guī)律.7、D【解析】根據(jù)函數(shù)的定義可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應關系,據(jù)此即可確定答案.【詳解】A.如圖,,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;B.如圖,,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;C.如圖,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;D.對每一個x的值,都有唯一確定的y值與之對應,是函數(shù)圖象.故選:D.【點睛】本題考查了函數(shù)的定義.函數(shù)的定義:在一個變化過程中,有兩個變量x,y,對于x的每一個取值,y都有唯一確定的值與之對應,則y是x的函數(shù),x叫自變量.8、A【分析】連接FB,根據(jù)已知可得到?△ABC與△AFC是同底等高的三角形,由已知可求得△ABC的面積為大正方形面積的一半,從而不難求得S的值.【詳解】解:連接FB,∵四邊形EFGB為正方形∴∠FBA=∠BAC=45°,∴FB∥AC,∴△ABC與△AFC是同底等高的三角形,∵2S△ABC=S正ABCD,S正ABCD=2×2=4,∴S=2故選A.【點睛】本題利用了正方形的性質,內(nèi)錯角相等,兩直線平行的判定方法,及同底等高的三角形的面積相等的性質求解.9、C【分析】根據(jù)根與系數(shù)的關系可得a+b=2,根據(jù)一元二次方程的解的定義可得a2=2a+1,然后把a2+a+3b變形為3(a+b)+1,代入求值即可.【詳解】由題意知,a+b=2,a2-2a-1=0,即a2=2a+1,則a2+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故選C.【點睛】本題考查了根與系數(shù)的關系及一元二次方程的解,難度適中,關鍵掌握用根與系數(shù)的關系與代數(shù)式變形相結合進行解題.10、D【詳解】考查相反數(shù)的概念及應用,只有符號不同的兩個數(shù),叫做互為相反數(shù).的相反數(shù)是.故選D.二、填空題(每小題3分,共24分)11、x>4【分析】分別解出不等式組中的每一個不等式,然后根據(jù)同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.12、1【分析】設該群的人數(shù)是x人,則每個人要發(fā)其他(x﹣1)張紅包,則共有x(x﹣1)張紅包,等于156個,由此可列方程.【詳解】設該群共有x人,依題意有:x(x﹣1)=156解得:x=﹣12(舍去)或x=1.故答案為1.【點睛】本題考查的是一元二次方程的應用,正確找準等量關系列方程即可,比較簡單.13、8.04【分析】先利用古典概型的概率公式求概率,再求區(qū)域A的面積的估計值.【詳解】解:由題意,∵在矩形內(nèi)隨機產(chǎn)生10000個點,落在區(qū)域A內(nèi)點的個數(shù)平均值為6700個,∴概率P=,∵4×3的矩形面積為12,∴區(qū)域A的面積的估計值為:0.67×12=8.04;故答案為:8.04;【點睛】本題考查古典概型概率公式,考查學生的計算能力,屬于中檔題.14、【分析】構造直角三角形,利用銳角三角函數(shù)及三角形的邊角關系求解.【詳解】解:如圖所示,過點C作CD⊥AB,垂足為D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=,在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案為.【點睛】本題考查了特殊角的三角函數(shù)值及直角三角形的邊角間關系,構造直角三角形是解決本題的關鍵.15、1【分析】根據(jù)根與系數(shù)的關系得到x1+x2=-3,x1x2=-4,再利用完全平方公式變形得到x12+x1x2+x22=(x1+x2)2-x1x2,然后利用整體代入的方法計算.【詳解】根據(jù)題意得x1+x2=-3,x1x2=-4,

所以x12+x1x2+x22=(x1+x2)2-x1x2=(-3)2-(-4)=1.

故答案為1.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.16、1.【解析】試題分析:根據(jù)圓的確定先做出過A,B,C三點的外接圓,從而得出答案.如圖,分別作AB、BC的中垂線,兩直線的交點為O,以O為圓心、OA為半徑作圓,則⊙O即為過A,B,C三點的外接圓,由圖可知,⊙O還經(jīng)過點D、E、F、G、H這1個格點,故答案為1.考點:圓的有關性質.17、【分析】連接AB,從圖中明確,然后根據(jù)公式計算即可.【詳解】解:連接,∵,∴是直徑,根據(jù)同弧對的圓周角相等得:,∵,∴,,即圓的半徑為2,∴.故答案為:.【點睛】本題考查了同弧對的圓周角相等;90°的圓周角對的弦是直徑;銳角三角函數(shù)的概念;圓、直角三角形的面積分式,解題的關鍵是熟練運用所學的知識進行解題.18、【分析】首先判斷出是中心對稱圖形的有多少張,再利用概率公式可得答案.【詳解】共有9張卡片,是中心對稱圖形車標卡片是第2張,則抽到的是中心對稱圖形車標卡片的概率是,故答案為:.【點睛】此題主要考查了概率公式和中心對稱圖形,關鍵是掌握隨機事件A的概率P(A)=.三、解答題(共66分)19、(1)x1=2+,x2=2﹣;(2)1【分析】(1)方程利用配方法求出解即可;(2)原式利用二次根式性質,絕對值的代數(shù)意義,零指數(shù)冪法則,以及特殊角的三角函數(shù)值計算即可求出值.【詳解】(1)方程整理得:x2﹣4x=3,配方得:x2﹣4x+4=3+4,即(x﹣2)2=7,開方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)=1.【點睛】本題考查了利用配方法求一元二次方程的解以及實數(shù)的混合運算,涉及了:零指數(shù)、二次根式以及特殊角的三角函數(shù)值.解題的關鍵是熟練運用一元二次方程的解法以及特殊角的銳角三角函數(shù)的值.20、(1);(2)【分析】(1)利用因式分解法,即可得出結論;(2)先方程兩邊平方轉化成整式方程,再求一元二次方程的解,最后必須檢驗.【詳解】(1)∵x3+x2-2x=0,∴x(x-1)(x+2)=0∴x=0或x-1=0或x+2=0,∴x1=0,x2=1,x3=-2,故答案為1,-2;;(2),()給方程兩邊平方得:解得:,(不合題意舍去),∴是原方程的解;【點睛】主要考查了根據(jù)材料提供的方法解高次方程,無理方程,理解和掌握材料提供的方法是解題的關鍵.21、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【點睛】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關鍵.①有兩個對應角相等的三角形相;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.22、(1),點的坐標為;(2);(3)或.【分析】(1)利用待定系數(shù)法求解析式,令y值相等求點B坐標;(2)數(shù)形結合求面積;(3)數(shù)形結合,利用圖像解不等式【詳解】解:(1)把代入得,∴.∴反比例函數(shù)的解析式為.聯(lián)立解得∴點的坐標為.(2)設直線與軸交于點.可知點的坐標為,∴.∴.(3)當或時,反比例函數(shù)值小于一次函數(shù)值.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的綜合應用,數(shù)形結合思想是解題的關鍵23、【分析】根據(jù)特殊角的三角函數(shù)值與二次根式的運算法則即可求解.【詳解】解:原式====.【點睛】此題主要考查實數(shù)的運算,解題的關鍵是熟知特殊角的三角函數(shù)值.24、(1)見解析;(2);(3)【分析】(1)根據(jù)直徑所對的圓周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)連接OC交BD于G,設,根據(jù)垂徑定理的推論可得出OC垂直平分BD,進而推出OG為中位線,再判定,利用對應邊成比例即可求出的值;(3)連接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,設,則,再判定,利用對應邊成比例求出m的值,進而得到AB和AD的長,再用勾股定理求出BD,可求出△BED的面積,由C為DE的中點可得△BEC為△BED面積的一半,即可得出答案.【詳解】(1)證明:∵AD是的直徑∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如圖,連接OC交BD于G,,設,則,OC=AD=∴OC垂直平分BD又∵O為AD的中點∴OG為△ABD的中位線∴OC∥AB,OG=,CG=(3)如圖,連接OC交BD于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論