江西省新余一中學2022-2023學年數(shù)學九年級上冊期末學業(yè)水平測試試題含解析_第1頁
江西省新余一中學2022-2023學年數(shù)學九年級上冊期末學業(yè)水平測試試題含解析_第2頁
江西省新余一中學2022-2023學年數(shù)學九年級上冊期末學業(yè)水平測試試題含解析_第3頁
江西省新余一中學2022-2023學年數(shù)學九年級上冊期末學業(yè)水平測試試題含解析_第4頁
江西省新余一中學2022-2023學年數(shù)學九年級上冊期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,在連接兩點所得的所有線段中任取一條線段,取到長度為的線段的概率為()A. B. C. D.2.如圖,在中,平分于.如果,那么等于()A. B. C. D.3.拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示.下列敘述中:①;②關于的方程的兩個根是;③;④;⑤當時,隨增大而增大.正確的個數(shù)是()A.4 B.3 C.2 D.14.如圖,在⊙O中,AB為直徑,CD為弦,∠CAB=50°,則∠ADC=()A.25° B.30° C.40° D.50°5.如圖,是的內(nèi)切圓,切點分別是、,連接,若,則的度數(shù)是()A. B. C. D.6.在比例尺為1:100000的城市交通圖上,某道路的長為3厘米,則這條道路的實際距離為()千米.A.3 B.30 C.3000 D.0.37.拋物線y=x2﹣2x+2的頂點坐標為()A.(1,1) B.(﹣1,1) C.(1,3) D.(﹣1,3)8.某地區(qū)在一次空氣質量檢測中,收集到5天的空氣質量指數(shù)如下:81,70,56,61,81,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.70,81 B.81,81 C.70,70 D.61,819.如圖,AB、CD相交于點O,AD∥CB,若AO=2,BO=3,CD=6,則CO等于()A.2.4 B.3 C.3.6 D.410.下列四種圖案中,不是中心對稱圖形的為()A. B. C. D.11.據(jù)路透社報道,中國華為技術有限公司推出新的服務器芯片組,此舉正值中國努力提高芯片制造能力,并減少對進口芯片的嚴重依賴.華為技術部門還表示,電子元件的尺寸大幅度縮小,在芯片上某種電子元件大約只占有面積.其中0.00000065用科學記數(shù)法表示為()A. B. C. D.12.圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為()A.(54+10)cm B.(54+10)cm C.64cm D.54cm二、填空題(每題4分,共24分)13.在直徑為4cm的⊙O中,長度為的弦BC所對的圓周角的度數(shù)為____________.14.為了估計拋擲同一枚啤酒瓶蓋落地后凸面向上的概率,小明做了大量重復試驗.經(jīng)過統(tǒng)計發(fā)現(xiàn)共拋擲次啤酒瓶蓋,凸面向上的次數(shù)為次,由此可估計拋擲這枚啤酒瓶蓋落地后凸面向上的概率約為_______________________(結果精確到)15.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為12m,那么這棟建筑物的高度為_____m.16.拋物線的開口方向是_____.17.如圖,點C是以AB為直徑的半圓上一個動點(不與點A、B重合),且AC+BC=8,若AB=m(m為整數(shù)),則整數(shù)m的值為______.18.已知點P是線段AB的黃金分割點,PA>PB,AB=4cm,則PA=____cm.三、解答題(共78分)19.(8分)已知在矩形中,,.是對角線上的一個動點(點不與點,重合),過點作,交射線于點.聯(lián)結,畫,交于點.設,.(1)當點,,在一條直線上時,求的面積;(2)如圖1所示,當點在邊上時,求關于的函數(shù)解析式,并寫出函數(shù)定義域;(3)聯(lián)結,若,請直接寫出的長.20.(8分)如圖,已知AB是⊙O的直徑,C,D是⊙O上的點,OC∥BD,交AD于點E,連結BC.(1)求證:AE=ED;(2)若AB=10,∠CBD=36°,求的長.21.(8分)某活動小組對函數(shù)的圖象性質進行探究,請你也來參與(1)自變量的取值范圍是______;(2)表中列出了、的一些對應值,則______;(3)依據(jù)表中數(shù)據(jù)畫出了函數(shù)圖象的一部分,請你把函數(shù)圖象補充完整;01233003(4)就圖象說明,當方程共有4個實數(shù)根時,的取值范圍是______.22.(10分)已知關于x的一元二次方程x2+x+m﹣1=1.(1)當m=1時,求方程的實數(shù)根.(2)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.23.(10分)如圖,已知四邊形ABCD是平行四邊形.(1)尺規(guī)作圖:按下列要求完成作圖;(保留作圖痕跡,請標注字母)①連AC;②作AC的垂直平分線交BC、AD于E、F;③連接AE、CF;(2)判斷四邊形AECF的形狀,并說明理由.24.(10分)有四張反面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將四張紙牌洗勻正面朝下隨機放在桌面上.(1)從四張紙牌中隨機摸出一張,摸出的牌面圖形是中心對稱圖形的概率是.(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張,不放回.再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形既是軸對稱圖形又是中心對稱圖形,則小亮獲勝,否則小明獲勝.這個游戲公平嗎?請用列表法(或畫樹狀圖)說明理由.(紙牌用表示)若不公平,請你幫忙修改一下游戲規(guī)則,使游戲公平.25.(12分)如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹標頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.26.如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.(1)請直接寫出D點的坐標.(2)求二次函數(shù)的解析式.(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、B【分析】先求出連接兩點所得的所有線段總數(shù),再用列舉法求出取到長度為的線段條數(shù),由此能求出在連接兩點所得的所有線段中任取一條線段,取到長度為的線段的概率.【詳解】根據(jù)題意可得所有的線段有15條,長度為的線段有AE、AC、FD、FB、EC、BD共6條,則P(長度為的線段)=.故選:B【點睛】本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.2、D【分析】先根據(jù)直角三角形的性質和角平分線的性質可得,再根據(jù)等邊對等角可得,最后在中,利用直角三角形的性質即可得.【詳解】平分則在中,故選:D.【點睛】本題考查了等腰三角形的性質、角平分線的性質、直角三角形的性質:(1)兩銳角互余;(2)所對的直角邊等于斜邊的一半;根據(jù)等腰三角形的性質得出是解題關鍵.3、B【分析】由拋物線的對稱軸是,可知系數(shù)之間的關系,由題意,與軸的一個交點坐標為,根據(jù)拋物線的對稱性,求得拋物線與軸的一個交點坐標為,從而可判斷拋物線與軸有兩個不同的交點,進而可轉化求一元二次方程根的判別式,當時,代入解析式,可求得函數(shù)值,即可判斷其的值是正數(shù)或負數(shù).【詳解】拋物線的對稱軸是;③正確,與軸的一個交點坐標為拋物線與與軸的另一個交點坐標為關于的方程的兩個根是;②正確,當x=1時,y=;④正確拋物線與軸有兩個不同的交點,則①錯誤;當時,隨增大而減小當時,隨增大而增大,⑤錯誤;②③④正確,①⑤錯誤故選:B.【點睛】本題考查二次函數(shù)圖象的基本性質:對稱性、增減性、函數(shù)值的特殊性、二次函數(shù)與一元二次方程的綜合運用,是常見考點,難度適中,熟練掌握二次函數(shù)圖象基本性質是解題關鍵.4、C【分析】先推出∠ABC=40°,根據(jù)同弧所對的圓周角相等,可得∠ABC=∠ADC=40°,即可得出答案.【詳解】解:∵AB為直徑,∴∠ACB=90°,∵∠CAB=50°,∴∠ABC=40°,∵,∴∠ABC=∠ADC=40°,故選:C.【點睛】本題考查了直徑所對的圓周角是90°,同弧所對的圓周角相等,推出∠ABC=90°是解題關鍵.5、C【分析】由已知中∠A=100°,∠C=30°,根據(jù)三角形內(nèi)角和定理,可得∠B的大小,結合切線的性質,可得∠DOE的度數(shù),再由圓周角定理即可得到∠DFE的度數(shù).【詳解】解:∠B=180°?∠A?∠C=180?100°?30°=50°

∠BDO+∠BEO=180°

∴B、D、O、E四點共圓

∴∠DOE=180°?∠B=180°?50°=130°

又∵∠DFE是圓周角,∠DOE是圓心角

∠DFE=∠DOE=65°

故選:C.【點睛】本題考查的知識點是圓周角定理,切線的性質,其中根據(jù)切線的性質判斷出B、D、O、E四點共圓,進而求出∠DOE的度數(shù)是解答本題的關鍵.6、A【分析】根據(jù)比例尺=圖上距離:實際距離,依題意列比例式直接求解即可.【詳解】解:設這條道路的實際長度為x,則=,

解得x=300000cm=3km.

∴這條道路的實際長度為3km.

故選A.【點睛】本題考查成比例線段問題,能夠根據(jù)比例尺正確進行計算,注意單位的轉換7、A【解析】分析:把函數(shù)解析式整理成頂點式形式,然后寫出頂點坐標即可.詳解:∵y=x2-2x+2=(x-1)2+1,∴頂點坐標為(1,1).故選A.點睛:本題考查了二次函數(shù)的性質,熟練掌握利用頂點式解析式寫出頂點坐標的方法是解題的關鍵.8、A【分析】根據(jù)中位數(shù)的定義和眾數(shù)的定義即可得出結論.【詳解】解:將這5天的空氣質量指數(shù)從小到大排列后為:56,61,70,81,81,故這組數(shù)據(jù)的中位數(shù)為:70根據(jù)眾數(shù)的定義,出現(xiàn)次數(shù)最多的數(shù)據(jù)為81,故眾數(shù)為81.故選:A.【點睛】此題考查的是求一組數(shù)據(jù)的中位數(shù)和眾數(shù),掌握中位數(shù)的定義和眾數(shù)的定義是解決此題的關鍵.9、C【分析】由平行線分線段成比例定理,得到;利用AO、BO、CD的長度,求出CO的長度,即可解決問題.【詳解】如圖,∵AD∥CB,

∴;

∵AO=2,BO=3,CD=6,

∴,解得:CO=3.6,

故選C.【點睛】本題考查了平行線分線段成比例定理及其應用問題.掌握平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例是解題的關鍵..10、D【分析】根據(jù)中心對稱圖形的定義逐個判斷即可.【詳解】解:A、是中心對稱圖形,故本選項不符合題意;

B、是中心對稱圖形,故本選項不符合題意;

C、是中心對稱圖形,故本選項符合題意;

D、不是中心對稱圖形,故本選項符合題意;故選D.【點睛】本題考查了對中心對稱圖形的定義,判斷中心對稱圖形的關鍵是旋轉180°后能夠重合.能熟知中心對稱圖形的定義是解此題的關鍵.11、B【分析】把一個數(shù)表示成的形式,其中,n是整數(shù),這種記數(shù)方法叫做科學記數(shù)法,根據(jù)科學記數(shù)法的要求即可解答.【詳解】0.00000065=,故選:B.【點睛】此題考察科學記數(shù)法,注意n的值的確定方法,當原數(shù)小于1時,n是負整數(shù),整數(shù)等于原數(shù)左起第一個非零數(shù)字前0的個數(shù),按此方法即可正確求解.12、C【分析】過A作AE⊥CP于E,過B作BF⊥DQ于F,則可得AE和BF的長,依據(jù)端點A與B之間的距離為10cm,即可得到可以通過閘機的物體的最大寬度.【詳解】如圖所示,過A作AE⊥CP于E,過B作BF⊥DQ于F,則Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵點A與B之間的距離為10cm,∴通過閘機的物體的最大寬度為27+10+27=64(cm),故選C.【點睛】本題主要考查了特殊角的三角函數(shù)值,特殊角的三角函數(shù)值應用廣泛,一是它可以當作數(shù)進行運算,二是具有三角函數(shù)的特點,在解直角三角形中應用較多.二、填空題(每題4分,共24分)13、60°或120°【分析】如下圖所示,分兩種情況考慮:D點在優(yōu)弧CDB上或E點在劣弧BC上時,根據(jù)三角函數(shù)可求出∠OCF的大小,進而求出∠BOC的大小,再由圓周角定理可求出∠D、∠E大小,進而得到弦BC所對的圓周角.【詳解】解:分兩種情況考慮:D在優(yōu)弧CDB上或E在劣弧BC上時,可得弦BC所對的圓周角為∠D或∠E,如下圖所示,作OF⊥BC,由垂徑定理可知,F(xiàn)為BC的中點,∴CF=BF=BC=,又直徑為4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圓內(nèi)接四邊形的對角互補,∴∠E=120°,則弦BC所對的圓周角為60°或120°.故答案為:60°或120°.【點睛】此題考查了圓周角定理,圓內(nèi)接四邊形的性質,銳角三角函數(shù)定義,以及特殊角的三角函數(shù)值,熟練掌握圓周角定理是解本題的關鍵.14、【分析】根據(jù)多次重復試驗中事件發(fā)生的頻率估計事件發(fā)生的概率即可.【詳解】∵拋擲同一枚啤酒瓶蓋1000次.經(jīng)過統(tǒng)計得“凸面向上”的次數(shù)約為10次,∴拋擲這枚啤酒瓶蓋出現(xiàn)“凸面向上”的概率約為=0.1,故答案為:0.1.【點睛】本題主要考查概率的意義、等可能事件的概率,大量重復試驗事件發(fā)生的頻率約等于概率.15、1.【解析】試題解析:設這棟建筑物的高度為由題意得解得:即這棟建筑物的高度為故答案為1.16、向上【分析】根據(jù)二次項系數(shù)的符號即可確定答案.【詳解】其二次項系數(shù)為2,且二次項系數(shù):2>0,所以開口方向向上,故答案為:向上.【點睛】本題考查了二次函數(shù)的性質,熟知二次函數(shù)y=ax2+bx+c(a≠0)圖象的開口方向與a的值有關是解題的關鍵.17、6或1【分析】因為直徑所對圓周角為直角,所以ABC的邊長可應用勾股定理求解,其中,且AC+BC=8,即可求得,列出關于BC的函數(shù)關系式,再根據(jù)二次函數(shù)的性質和三角形的三邊關系得出的范圍,再根據(jù)題意要求AB為整數(shù),即可得出AB可能的長度.【詳解】解:∵直徑所對圓周角為直角,故ABC為直角三角形,∴根據(jù)勾股定理可得,,即,又∵AC+BC=8,∴AC=8-BC∴∵∴當BC=4時,的最小值=32,∴AB的最小值為∵∴∵AB=m∴∵m為整數(shù)∴m=6或1,故答案為:6或1.【點睛】本題主要考察了直徑所對圓周角為直角、勾股定理、三角形三邊關系、二次函數(shù)的性質,解題的關鍵在于找出AB長度的范圍.18、2-2【分析】根據(jù)黃金分割點的定義,知AP是較長線段;則AP=AB,代入運算即可.【詳解】解:由于P為線段AB=4的黃金分割點,且AP是較長線段;則AP=4×=cm,故答案為:(2-2)cm.【點睛】此題考查了黃金分割的定義,應該識記黃金分割的公式:較短的線段=原線段的,難度一般.三、解答題(共78分)19、(1);(2);(3)或.【分析】(1)首先證明,由推出,求出,再利用即可求解;(2)首先證明,可得,再由,推出,即,可得,代入比例式即可解決問題;(3)若,分兩種情況:當點P在線段BC上時和當點F在線段BC的延長線上時,分情況運用相似三角形的性質進行討論即可.【詳解】(1)四邊形是矩形,,,,,在一條直線上,且,,,,,,,.(2),,,,,,又,,.,,,即,,,,.(3)①當點P在線段BC上時,如圖設整理得解得②當點F在線段BC的延長線上時,作PH⊥AD于點H,連接DF由,可得解得或(舍去)綜上所述,PD的長為或.【點睛】本題主要考查相似三角形的判定及性質,掌握相似三角形的判定方法及性質和分情況討論是解題的關鍵.20、(1)證明見解析;(2)【詳解】分析:(1)根據(jù)平行線的性質得出∠AEO=90°,再利用垂徑定理證明即可;(2)根據(jù)弧長公式解答即可.詳證明:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴=.點睛:此題考查弧長公式,關鍵是根據(jù)弧長公式和垂徑定理解答.21、(1)全體實數(shù);(2)1;(3)見解析;(4).【分析】(1)自變量沒有限制,故自變量取值范圍是全體實數(shù);(2)把x=-2代入函數(shù)解釋式即可得m的值;(3)描點、連線即可得到函數(shù)的圖象;(4)根據(jù)函數(shù)的圖象即可得到a的取值范圍是-1<a<1.【詳解】(1)自變量沒有限制,故自變量取值范圍是全體實數(shù);(2)當x=-2時,∴m=1(3)如圖所示(4)當方程共有4個實數(shù)根時,y軸左右兩邊應該都有2個交點,也就是圖象x軸下半部分,此時-1<a<1;故答案為:(1)全體實數(shù);(2)1;(3)見解析;(4).【點睛】本題考查了二次函數(shù)的圖象和性質,正確的識別圖象是解題的關鍵.22、(1)x1=,x2=(2)m<【分析】(1)令m=1,用公式法求出一元二次方程的根即可;(2)根據(jù)方程有兩個不相等的實數(shù)根,計算根的判別式得關于m的不等式,求解不等式即可.【詳解】(1)當m=1時,方程為x2+x﹣1=1.△=12﹣4×1×(﹣1)=5>1,∴x,∴x1,x2.(2)∵方程有兩個不相等的實數(shù)根,∴△>1,即12﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>1,∴m.【點睛】本題考查了一元二次方程的解法、根的判別式.一元二次方程根的判別式△=b2﹣4ac.23、(1)作圖見解析;(2)四邊形AECF為菱形,理由見解析.【解析】(1)按要求連接AC,分別以A,C為圓心,以大于AC長為半徑畫弧,弧在AC兩側的交點分別為P,Q,作直線PQ,PQ分別與BC,AC,AD交于點E,O,F(xiàn),連接AE、CF即可;(2)根據(jù)所作的是線段的垂直平分線結合平行四邊形的性質,證明△OAF≌△OCE,繼而得到OE=OF,從而得AC與EF互相垂直平分,根據(jù)對角線互相垂直平分的四邊形是菱形即可得.【詳解】(1)如圖,AE、CF為所作;(2)四邊形AECF為菱形,理由如下:∵EF垂直平分AC,∴OA=OC,EF⊥AC,∵四邊形ABCD為平行四邊形,∴AF∥CE,∴∠OAF=∠OCE,∠OFA=∠OEC,∴△OAF≌△OCE,∴OE=OF,∴AC與EF互相平分,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴平行四邊形AECF為菱形.【點睛】本題考查了平行四邊形的性質,全等三角形的判定與性質,段垂直平分線的性質,菱形的判定等,掌握尺規(guī)作圖的方法,作圖中的條件就是第二問中的已知條件,正確進行尺規(guī)作圖是解題的關鍵.24、(1);(2)見解析【分析】(1)直接根據(jù)概率公式計算即可.

(2)首先列表列出可能的情況,摸出的兩張牌面圖形既是軸對稱圖形又是中心對稱圖形的結果有2種,由概率公式得出概率;得出游戲不公平;關鍵概率相等修改即可.【詳解】解:(1)共有4張牌,正面是中心對稱圖形的情況有3種,從四張紙牌中隨機摸出一張,摸出的牌面圖形是中心對稱圖形的概率是;故答案為;(2)游戲不公平,理由如下:列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論