版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則()A. B.C. D.2.滿足2,的集合A的個數(shù)是A.2 B.3C.4 D.83.若,則()A. B.aC.2a D.4a4.可以化簡成()A. B.C. D.5.曲線在區(qū)間上截直線及所得的弦長相等且不為,則下列對,的描述正確的是A., B.,C., D.,6.如圖所示,一個水平放置的平面圖形的直觀圖是一個底角為45°,腰和上底長均為1的等腰梯形,則該平面圖形的面積等于()A. B.C. D.7.已知x,y是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知,,且,,,那么的最大值為()A. B.C.1 D.29.用平行于圓錐底面的平面截圓錐,所得截面面積與底面面積的比是1:3,這截面把圓錐母線分成的兩段的比是(
)A.1:3 B.1:()C.1:9 D.10.已知扇形的弧長是,面積是,則扇形的圓心角的弧度數(shù)是()A. B.C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.計算:___________.12.等腰直角△ABC中,AB=BC=1,M為AC的中點(diǎn),沿BM把△ABC折成二面角,折后A與C的距離為1,則二面角C—BM—A的大小為_____________.13.已知函數(shù),若方程有4個不同的實數(shù)根,則的取值范圍是____14.給出下列五個論斷:①;②;③;④;⑤.以其中的兩個論斷作為條件,一個論斷作為結(jié)論,寫出一個正確的命題:___________.15.的值為______16.已知定義在上的奇函數(shù)滿足,且當(dāng)時,,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)求的值;(2)若且,求sin2α-cosα的值18.我們知道,函數(shù)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關(guān)于點(diǎn)成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).已知(1)利用上述結(jié)論,證明:的圖象關(guān)于成中心對稱圖形;(2)判斷的單調(diào)性(無需證明),并解關(guān)于x的不等式19.已知定義在上的函數(shù)是奇函數(shù)(1)求實數(shù),的值;(2)判斷函數(shù)的單調(diào)性;(3)若對任意的,不等式有解,求實數(shù)的取值范圍20.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若,求的值.21.計算下列各式:(1)(2)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】因為,所以;因為,,所以,所以.選C2、C【解析】由條件,根據(jù)集合的子集的概念與運(yùn)算,即可求解【詳解】由題意,可得滿足2,的集合A為:,,,2,,共4個故選C【點(diǎn)睛】本題主要考查了集合的定義,集合與集合的包含關(guān)系的應(yīng)用,其中熟記集合的子集的概念,準(zhǔn)確利用列舉法求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題3、A【解析】利用對數(shù)的運(yùn)算可求解.【詳解】,故選:A4、B【解析】根據(jù)指數(shù)冪和根式的運(yùn)算性質(zhì)轉(zhuǎn)化即可【詳解】解:,故選:B5、A【解析】分析:,關(guān)于對稱,可得,由直線及的距離小于可得.詳解:因為曲線在區(qū)間上截直線及所得的弦長相等且不為,可知,關(guān)于對稱,所以,又弦長不為,直線及的距離小于,∴.故選A.點(diǎn)睛:本題主要考查三角函數(shù)的圖象與性質(zhì),意在考查綜合運(yùn)用所學(xué)知識解決問題的能力,以及數(shù)形結(jié)合思想的應(yīng)用,屬于簡單題.6、D【解析】根據(jù)斜二測畫法的規(guī)則,得出該平面圖象的特征,結(jié)合面積公式,即可求解.【詳解】由題意,根據(jù)斜二測畫法規(guī)則,可得該平面圖形是上底長為,下底長為,高為的直角梯形,所以計算得面積為.故選:D.7、C【解析】由充要條件的定義求解即可【詳解】因為,若,則,若,則,即,所以,即“”是“”的充要條件,故選:C.8、C【解析】根據(jù)題意,由基本不等式的性質(zhì)可得,即可得答案.【詳解】根據(jù)題意,,,,則,當(dāng)且僅當(dāng)時等號成立,即的最大值為1.故選:9、B【解析】平行于底面的平面截圓錐可以得到一個小圓錐,利用它的底面與原圓錐的底面的面積之比得到相應(yīng)的母線長之比,故可得截面分母線段長所成的兩段長度之比.【詳解】設(shè)截面圓的半徑為,原圓錐的底面半徑為,則,所以小圓錐與原圓錐的母線長之比為,故截面把圓錐母線段分成的兩段比是.選B.【點(diǎn)睛】在平面幾何中,如果兩個三角形相似,那么它們的面積之比為相似比的平方,類似地,在立體幾何中,平行于底面的平面截圓錐所得的小圓錐與原來的圓錐的底面積之比為,體積之比為(分別為小圓錐的底面半徑和原圓錐的底面半徑).10、C【解析】根據(jù)扇形面積公式,求出扇形的半徑,再由弧長公式,即可求出結(jié)論.【詳解】因為扇形的弧長為4,面積為2,設(shè)扇形的半徑為,則,解得,則扇形的圓心角的弧度數(shù)為.故選:C.【點(diǎn)睛】本題考查扇形面積和弧長公式應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】直接利用對數(shù)的運(yùn)算法則以及指數(shù)冪的運(yùn)算法則化簡即可.【詳解】.故答案為:7.12、【解析】分別計算出的長度,然后結(jié)合二面角的求法,找出二面角,即可.【詳解】結(jié)合題意可知,所以,而發(fā)現(xiàn)所以,結(jié)合二面角找法:如果兩平面內(nèi)兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角,故為所求的二面角,為【點(diǎn)睛】本道題目考查了二面角的求法,尋求二面角方法:兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角13、【解析】先畫出函數(shù)的圖象,把方程有4個不同的實數(shù)根轉(zhuǎn)化為函數(shù)的圖象與有四個不同的交點(diǎn),結(jié)合對數(shù)函數(shù)和二次函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),要先畫出函數(shù)的圖象,如圖所示,又由方程有4個不同的實數(shù)根,即函數(shù)的圖象與有四個不同的交點(diǎn),可得,且,則=,因為,則,所以.故答案為.【點(diǎn)睛】本題主要考查了函數(shù)與方程的綜合應(yīng)用,其中解答中把方程有4個不同的實數(shù)根,轉(zhuǎn)化為兩個函數(shù)的有四個交點(diǎn),結(jié)合對數(shù)函數(shù)與二次函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于中檔試題.14、②③?⑤;③④?⑤;②④?⑤【解析】利用不等式的性質(zhì)和做差比較即可得到答案.【詳解】由②③?⑤,因為,,則.由③④?⑤,由于,,則,所以.由②④?⑤,由于,且,則,所以.故答案為:②③?⑤;③④?⑤;②④?⑤15、【解析】直接利用對數(shù)的運(yùn)算法則和指數(shù)冪的運(yùn)算法則求解即可【詳解】16、##【解析】先求得是周期為的周期函數(shù),然后結(jié)合周期性、奇偶性求得.【詳解】因為函數(shù)為上的奇函數(shù),所以,故,函數(shù)是周期為4的周期函數(shù).當(dāng)時,,則.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用誘導(dǎo)公式化簡可得,代入數(shù)據(jù),即可求得答案.(2)根據(jù)題意,可得,根據(jù)左右同時平方,利用的關(guān)系,結(jié)合的范圍,即可求得和的值,即可求得答案.【詳解】(1)利用誘導(dǎo)公式化簡可得,.(2)因為,所以,即,兩邊平方得1+2sinαcosα=,所以2sinαcosα=-,1-2sinαcosα=,即(sinα-cosα)2=,因為2sinαcosα=,,所以,所以sinα-cosα>0,所以sinα-cosα=,結(jié)合cosα+sinα=,解得sinα=,cosα=-,故sin2α-cosα=-(-)=.18、(1)證明見解析(2)為單調(diào)遞減函數(shù),不等式的解集見解析.【解析】(1)利用已知條件令,求出的解析式,利用奇函數(shù)的定義判斷為奇函數(shù),即可得證;(2)由(1)得,原不等式變成,利用函數(shù)單調(diào)性化為含有參數(shù)的一元二次不等式,求解即可.【小問1詳解】證明:∵,令,∴,即,又∵,∴為奇函數(shù),有題意可知,的圖象關(guān)于成中心對稱圖形;【小問2詳解】易知函數(shù)為單調(diào)遞增函數(shù),且對于恒成立,則函數(shù)在上為單調(diào)遞減函數(shù),由(1)知,的圖象關(guān)于成中心對稱圖形,即,不等式得:,即,則,整理得,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.19、(1),(2)在上為減函數(shù)(3)【解析】(1)由,求得,再由,求得,結(jié)合函數(shù)的奇偶性的定義,即可求解;(2)化簡,根據(jù)函數(shù)的單調(diào)性的定義及判定方法,即可求解;(3)根據(jù)題意化簡不等式為在有解,結(jié)合正弦函數(shù)和二次函數(shù)的性質(zhì),即可求解.【小問1詳解】解:由題意,定義在上的函數(shù)是奇函數(shù),可得,解得,即,又由,可得,解得,所以,又由,所以,.【小問2詳解】解:由,設(shè),則,因為函數(shù)在上增函數(shù)且,所以,即,所以在上為減函數(shù).【小問3詳解】解:由函數(shù)在上為減函數(shù),且函數(shù)為奇函數(shù),因為,即,可得,又由對任意的,不等式有解,即在有解,因為,則,所以,所以,即實數(shù)的取值范圍是.20、(1);(2),;(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電影行業(yè)安全生產(chǎn)工作總結(jié)
- 傳統(tǒng)制造業(yè)技術(shù)職位展望
- 二零二五年度航空航天材料試驗委托協(xié)議3篇
- 二零二五年度房屋收購合同環(huán)保驗收與評估范本3篇
- 二零二五版養(yǎng)老院專業(yè)保潔及消毒服務(wù)合同2篇
- 二零二五版?zhèn)€人二手房購房合同與產(chǎn)權(quán)過戶指導(dǎo)書
- 航空行業(yè)助理的職位介紹
- 汽車行業(yè)財務(wù)預(yù)測分析工作總結(jié)
- 二零二五年度產(chǎn)品責(zé)任糾紛民事答辯狀范文3篇
- 二零二五年度木材市場樹木買賣協(xié)議3篇
- 浙江省名校新2025屆高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析
- 學(xué)習(xí)2024《關(guān)于加強(qiáng)社會組織規(guī)范化建設(shè)推動社會組織高質(zhì)量發(fā)展的意見》解讀課件
- 2024年縣全民健身活動狀況調(diào)查活動方案
- SOR-04-014-00 藥品受托生產(chǎn)企業(yè)審計評估報告模板
- 新媒體論文開題報告范文
- 2024年云南省中考數(shù)學(xué)試題含答案解析
- 湖北宜昌歷年中考語文現(xiàn)代文之記敘文閱讀16篇(含答案)(2003-2023)
- 問題探究如何讓城市不再看海(教學(xué)課件)高一地理
- 2024年人教版五年級數(shù)學(xué)(上冊)模擬考卷及答案(各版本)
- 人教版八年級下冊歷史第1課 中華人民共和國成立 說課稿
- 《地球物理勘查》全冊配套完整教學(xué)課件
評論
0/150
提交評論