江蘇省鎮(zhèn)江市丹徒區(qū)2023學年中考聯(lián)考數(shù)學試卷含解析_第1頁
江蘇省鎮(zhèn)江市丹徒區(qū)2023學年中考聯(lián)考數(shù)學試卷含解析_第2頁
江蘇省鎮(zhèn)江市丹徒區(qū)2023學年中考聯(lián)考數(shù)學試卷含解析_第3頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江蘇省鎮(zhèn)江市丹徒區(qū)2023學年中考聯(lián)考數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在測試卷卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.122.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣163.天氣越來越熱,為防止流行病傳播,學校決定用420元購買某種牌子的消毒液,經(jīng)過還價,每瓶便宜0.5元,結(jié)果比用原價購買多買了20瓶,求原價每瓶多少元?設原價每瓶x元,則可列出方程為()A.-=20 B.-=20C.-=20 D.4.小王拋一枚質(zhì)地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.5.1cm2的電子屏上約有細菌135000個,135000用科學記數(shù)法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1036.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:37.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為()A. B. C. D.8.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)

25

26

27

28

天數(shù)

1

1

2

3

則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,279.下列計算正確的是()A.a(chǎn)3?a3=a9B.(a+b)2=a2+b2C.a(chǎn)2÷a2=0D.(a2)3=a610.由若干個相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個幾何體的小立方體的個數(shù)是()A.3 B.4 C.5 D.611.如圖,有一些點組成形如四邊形的圖案,每條“邊”(包括頂點)有n(n>1)個點.當n=2018時,這個圖形總的點數(shù)S為()A.8064 B.8067 C.8068 D.807212.小亮家1月至10月的用電量統(tǒng)計如圖所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()A.30和20B.30和25C.30和22.5D.30和17.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.按照神舟號飛船環(huán)境控制與生命保障分系統(tǒng)的設計指標,“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.14.計算:(π﹣3)0﹣2-1=_____.15.如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉(zhuǎn)30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.16.已知關于X的一元二次方程有實數(shù)根,則m的取值范圍是____________________17.如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF=__.18.若式子有意義,則實數(shù)x的取值范圍是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx20.(6分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).21.(6分)某校對六至九年級學生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少學生進行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有200名學生,如圖是根據(jù)各年級學生人數(shù)占全校學生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請估計全校六至九年級學生中最喜歡跳繩活動的人數(shù)約為多少?22.(8分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.23.(8分)在第23個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果按,,,分為四個等級,并依次用A,B,C,D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計的數(shù)據(jù),繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:求本次調(diào)查的學生人數(shù);求扇形統(tǒng)計圖中等級B所在扇形的圓心角度數(shù),并把條形統(tǒng)計圖補充完整;若該校共有學生1200人,試估計每周課外閱讀時間滿足的人數(shù).24.(10分)如圖,在方格紙上建立平面直角坐標系,每個小正方形的邊長為1.(1)在圖1中畫出△AOB關于x軸對稱的△A1OB1,并寫出點A1,B1的坐標;(2)在圖2中畫出將△AOB繞點O順時針旋轉(zhuǎn)90°的△A2OB2,并求出線段OB掃過的面積.25.(10分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?26.(12分)為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.27.(12分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關于x的關系式(結(jié)果保留π).

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【答案解析】測試卷解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關系;3.等腰三角形的性質(zhì).2、B【答案解析】

先把原式化為2x÷22y×23的形式,再根據(jù)同底數(shù)冪的乘法及除法法則進行計算即可.【題目詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【答案點睛】本題考查的是同底數(shù)冪的乘法及除法運算,根據(jù)題意把原式化為2x÷22y×23的形式是解答此題的關鍵.3、C【答案解析】

關鍵描述語是:“結(jié)果比用原價多買了1瓶”;等量關系為:原價買的瓶數(shù)-實際價格買的瓶數(shù)=1.【題目詳解】原價買可買瓶,經(jīng)過還價,可買瓶.方程可表示為:﹣=1.故選C.【答案點睛】考查了由實際問題抽象出分式方程.列方程解應用題的關鍵步驟在于找相等關系.本題要注意討價前后商品的單價的變化.4、B【答案解析】

直接利用概率的意義分析得出答案.【題目詳解】解:因為一枚質(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【答案點睛】此題主要考查了概率的意義,明確概率的意義是解答的關鍵.5、B【答案解析】

根據(jù)科學記數(shù)法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同;當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù)).【題目詳解】解:135000用科學記數(shù)法表示為:1.35×1.故選B.【答案點睛】科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.6、D【答案解析】測試卷分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.7、C【答案解析】

根據(jù)已知三點和近似滿足函數(shù)關系y=ax2+bx+c(a≠0)可以大致畫出函數(shù)圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【題目詳解】解:由圖表數(shù)據(jù)描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉(zhuǎn)角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節(jié)省燃氣.故選:C,【答案點睛】本題考查了二次函數(shù)的應用,二次函數(shù)的圖像性質(zhì),熟練掌握二次函數(shù)圖像對稱性質(zhì),判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.8、A【答案解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.9、D.【答案解析】測試卷分析:A、原式=a6,不符合題意;B、原式=a2+2ab+b2,不符合題意;C、原式=1,不符合題意;D、原式=a6,符合題意,故選D考點:整式的混合運算10、B【答案解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從主視圖看第一列兩個正方體,說明俯視圖中的左邊一列有兩個正方體,主視圖右邊的一列只有一行,說明俯視圖中的右邊一行只有一列,所以此幾何體共有四個正方體.故選B.11、C【答案解析】分析:本題重點注意各個頂點同時在兩條邊上,計算點的個數(shù)時,不要把頂點重復計算了.詳解:此題中要計算點的個數(shù),可以類似周長的計算方法進行,但應注意各個頂點重復了一次.如當n=2時,共有S2=4×2﹣4=4;當n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當n=2018時,S2018=4×2018﹣4=1.故選C.點睛:本題考查了圖形的變化類問題,關鍵是通過歸納與總結(jié),得到其中的規(guī)律.12、C【答案解析】

將折線統(tǒng)計圖中的數(shù)據(jù)從小到大重新排列后,根據(jù)中位數(shù)和眾數(shù)的定義求解可得.【題目詳解】將這10個數(shù)據(jù)從小到大重新排列為:10、15、15、20、20、25、25、30、30、30,所以該組數(shù)據(jù)的眾數(shù)為30、中位數(shù)為20+252故選:C.【答案點睛】此題考查了眾數(shù)與中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、17℃.【答案解析】

根據(jù)返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【題目詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【答案點睛】本題考查正數(shù)和負數(shù)的意義.±4℃指的是比21℃高于4℃或低于4℃.14、12【答案解析】

分別利用零指數(shù)冪a0=1(a≠0),負指數(shù)冪a-p=1a【題目詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【答案點睛】本題考查了零指數(shù)冪和負整數(shù)指數(shù)冪的運算,掌握運算法則是解題關鍵.15、6﹣2【答案解析】

由旋轉(zhuǎn)角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設B′C′和CD的交點是O,連接OA,構(gòu)造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計算面積即可.【題目詳解】解:設B′C′和CD的交點是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【答案點睛】此題的重點是能夠計算出四邊形的面積.注意發(fā)現(xiàn)全等三角形.16、m≤3且m≠2【答案解析】測試卷解析:∵一元二次方程有實數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.17、15°【答案解析】

根據(jù)平行四邊形的性質(zhì)和圓的半徑相等得到△AOB為等邊三角形,根據(jù)等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據(jù)圓周角定理計算即可.【題目詳解】解答:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圓周角定理得,故答案為15°.18、x≤2且x≠1【答案解析】

根據(jù)被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【題目詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【答案點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負數(shù).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣2x+1;y=﹣80x【答案解析】

(1)根據(jù)OA、OB的長寫出A、B兩點的坐標,再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點C的坐標,進而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點坐標即可.(3)觀察函數(shù)圖象,當函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點時,x的取值范圍即為【題目詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點C坐標為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當﹣=﹣2x+1時,解得,x1=10,x2=﹣4,當x=10時,y=﹣8,∴點E坐標為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【答案點睛】本題考查了應用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點通過函數(shù)圖像解不等式.20、(1)是;(2)見解析;(3)150°.【答案解析】

(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【題目詳解】解:(1)一個內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【答案點睛】本題是四邊形綜合題目,考查了等距四邊形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識;本題綜合性強,有一定難度,證明三角形全等是解決問題的關鍵.21、(1)50(2)36%(3)160【答案解析】

(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動的人數(shù),除以(1)中的調(diào)查總?cè)藬?shù)即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全???cè)藬?shù)的百分比,然后求出全校的總?cè)藬?shù);再根據(jù)最喜歡跳繩活動的學生所占的百分比,繼而可估計出全校學生中最喜歡跳繩活動的人數(shù).【題目詳解】(1)該校對名學生進行了抽樣調(diào)查.本次調(diào)查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數(shù)占被調(diào)查人數(shù)的.(3),人,人.答:估計全校學生中最喜歡跳繩活動的人數(shù)約為人.【答案點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大?。?2、(1)B(1,0),C(0,﹣4);(2)點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【答案解析】測試卷分析:(1)在拋物線解析式中令y=0可求得B點坐標,令x=0可求得C點坐標;(2)①當PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到=2,設OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標,過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當BC⊥PC時,△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當AP最大時,OE的值最大.測試卷解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當BC⊥PC時,△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當AP最大時,OE的值最大,∵當P在AC的延長線上時,AP的值最大,最大值=,∴OE的最大值為.故答案為.23、本次調(diào)查的學生人數(shù)為200人;B所在扇形的圓心角為,補全條形圖見解析;全校每周課外閱讀時間滿足的約有360人.【答案解析】【分析】根據(jù)等級A的人數(shù)及所占百分比即可得出調(diào)查學生人數(shù);先計算出C在扇形圖中的百分比,用在扇形圖中的百分比可計算出B在扇形圖中的百分比,再計算出B在扇形的圓心角;總?cè)藬?shù)課外閱讀時間滿足的百分比即得所求.【題目詳解】由條形圖知,A級的人數(shù)為20人,由扇形圖知:A級人數(shù)占總調(diào)查人數(shù)的,所以:人,即本次調(diào)查的學生人數(shù)為200人;由條形圖知:C級的人數(shù)為60人,所以C級所占的百分比為:,B級所占的百分比為:,B級的人數(shù)為人,D級的人數(shù)為:人,B所在扇形的圓心角為:,補全條形圖如圖所示:;因為C級所占的百分比為,所以全校每周課外閱讀時間滿足的人數(shù)為:人,答:全校每周課外閱讀時間滿足的約有360人.【答案點睛】本題考查了扇形圖和條形圖的相關知識,從統(tǒng)計圖中找到必要的信息進行解題是關鍵.扇形圖中某項的百分比,扇形圖中某項圓心角的度數(shù)該項在扇形圖中的百分比.24、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).【答案解析】

(1)根據(jù)軸對稱性質(zhì)解答點關于x軸對稱橫坐標不變,縱坐標互為相反數(shù);(2)根據(jù)旋轉(zhuǎn)變換的性質(zhì)、扇形面積公式計算.【題目詳解】(1)如圖所示:A1(﹣1,﹣2),B1(2,﹣1);(2)將△AOB繞點O順時針旋轉(zhuǎn)90°的△A2OB2如圖所示:線段OB掃過的面積為:【答案點睛】此題主要考查了圖形的旋轉(zhuǎn)以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論