




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第十六章偏導數(shù)與全微§1導數(shù)與全微分的(1)ux2ln(x2y2)u(xy)uarctanyxuxyxyuxyesin(xy)uxyyxu
x解
2xln(
y)
x2y
y)
x2y2]u
2x2
2x2.x2y2ucos(xyxy)(sinxyycos(xyy(xysinxyxyycos(xyx(xysinxyu 1
(y)x
(y)x
;x2y
u
1(y)x
1 x2y
uy1 uxx uyesin(xy)xyesin(xy)cos(xyyy(1xycos(xy))esin(xy)xyyx(1xy
sin(xy)uyxy1yxlny
yxlnx 設
f(x,f(x,y)
1x2y
,x2y20,x2y2函數(shù)在(0,0
xf
f(x,0)f
0
0,即fx(0,00,而
yf
f(0,y)f
lim
不存在,
fy(0,0x2yx2y證明函數(shù)u x2yx2y(x)2(x)2lim lim
x0x2y不存在,由對稱性limyu(0,0)不存在,因而ux2y x2y2x2y2zuxeyzexyx2y2x2y2z2x2y2z
d(x2y2z2x2y2zx2y2zx2y2x2y2z2x2y2z2
dy
dzx2y2z2dud(xeyzexy)eyzdxxeyz(zdyydz)x2y2z2(eyzex)dx(xzeyz1)dyxyeyzdzx2x2y
在點(1,0和(0,1(2)uln(xy2在點(0,1和(1,1xzyu xzyxyux(y1)xy
在點(0,1x2yx2y
)
d(x2y2x2yx2yx2y2(x2y2x2
y2dx(x2y2((x2y2(x2y2)x2所以,在點(1,0du0,在點(0,1dudx
xy
(dx2ydy)
xy
dx
2yxy2
dy(0,1,dudx2dy在點(1,1du1dxdy1(1) x(1) 1(yzy2zz
1)z
xy x1
x1
x du
()yz
dx
y2
()y
dyz
()zy
dzy函數(shù)的定義域為{(x,y0xyor0yx}x0dudx
xdy(y1 ydx1 ydx1 y xy2xy2xyx2
(y1)sgn
)dx
x(1y)sgn
2yxy2yxyx2x0
f(x,y)f(0,y)lim(1
y
x
x在(0,y
(0,y
(0,y)
f(0,yy)f(0,y)lim
0 y0xy但在點(0,ydu不存在,因而uxy1xy
在點(0,1)不可微f(x,y在(0,0f(x,f(x,y)0
x2y
,x2y20x2y20解
xf
f(x,0)f
0
0fx(0,0)0fy(0,0)0f(xy在(0,0fxy
f
xf
y1x1x2x2y
更高階的無窮小,為此極
x2y
xx2y
1,x2y x2y
x2y
1(x2y2xx2xx2yx2y
0f(xy在(0,0
x2 f(x,y)x2y2,
x在(0,0
y2x2xx2x2y
x
x,所limf(xy0x2yx2y12
f(0,0),即f(x,y在點(0,0
xf
f(x,0)f
0limyf(0,0)
f(0,y)f(0,0)0 fx(0,0)fy(0,0)0f(x,y在(0,0f(x,y)f(0,0)[fx(0,0)x
x2fy(0,0)y](x)2(y)x2x2y
更高階的無窮小量,為此極lim
(,(x0x2
x2y2
令yx(xy沿直線yx趨于(0,0
(x2(x2y2(
x2
f(xy在(0,0
f(x,y)
y
) x2y
x2y200
x2y2的偏導數(shù)存在,但偏導數(shù)在(0,0)點不連續(xù),且在(0,0)點的任何鄰域中,而f在原
證
yf(x,y)2y(sinx2y2x2y2cosx2y2),xy
0,
x2y20,而limfx(x,y不存在,limfy(x,yfx(x,y),fy(x,y在(0,011
10,M0,1
且
MPn
,0)(P,)11
(P,1fx(Pn)fx1f(P)f
,0)1)1
MM 所以,fx(x,y),fy(x,y)在(0,0)點的任何鄰域中均
f(x,y)f(0,0)[fx(0,0)x
fy(x)(x)2
(x)2
0((x
0,()),f(xy在(0,0可微,且在(0,0df(0,0)0設
2xy f(x,y)x2y2 x
0 證
在(0,0
0
x2y20 2xy 證明f(x2y22,
x y22xyy 2xy22x2y
x2y2
y
0
fx(0,0
fx(x,y在(0,0
亦在(0,0設
1ex(x2y2
,x2y20f(x,y)x2y0f(xy在點(0,0df(0,0
x2y2x證 f(0,0)x
1
x3o(x3
1,f(0,0)lim00yyf(x,y)f(0,0)[fx(0,0)xfy11ex(x2y2
1x(x2y2)ex(x2y2 xx2y
3(x2y2)1x2(x2y2)2(x2(x2y2 3(x2y2) x2(x2y2)2(x2(x2y2)2)0((x,y)(0,0))2f(xy在(0,0df(0,0xdx設
f(x,y)x2y2,x
0
x2y2xx(t),yy(t是通過原點的任意可微曲線(x20y20)0t0x2ty2t)0,x(t),y(t可微f(x(t),y(tf(x,y在(0,0
x3
,t0,證明(1)設(t)
f(x(t),y(t))
(t)
t
(t)
x2(t)[x2(t)x(t)3y2(t)x(t)2x(t)y(t)y(t)][x2(t)y2(t)]2
,t0而在t
t
(t)(0)t
t0t(x
x3(t)y
0 t
(x(t))2(y(t))
[x(0)]2[
0
x3t(x3(t)y2x3t(x3(t)y2t
x3
t
t0
(t)
,即
0f(x(t),y(tf
(0,0)
f(x,0)f(0,0)f(0,y)fyf(0,0)y
0f(x,y在(0,0f(x,y)f(0,0)(fx(0,0)xfy x2
x
,x2x2x2y
更高階的無窮小,為此極lim1
)
xy,設
y033
3
(2x2)
22該極限不存在,因而
xy )不是 更高階的無窮小量,因此f(x,y)
x,y(1)(1x)m(1y)nx 1 解(1)f(x,y)m(1x)m11y)nf(x,y)n(1x)m(1y)n1 fx(0,0)m,fy(0,0)n (1x)m(1y)nf(0,0)f(0,0)xf(0,0)y()1mxny x,y(1x)m(1y)n1mxny
x2y2)fx(x,y)
1
xy
1y(1
1y (1xy)2(xy)211xfy(x,y)(1xy)2(xy)2f
(0,0)1
f(0,0)f(0,0arctan00,故arctanx 1
xy(),x,yarctanx1
xyuf(xyaxbcyd內(nèi)可微,且全微分du恒為零,問f(x,y f(x,y)在該矩形內(nèi)應取常數(shù)值.證明如下由于uf(x,y在矩形內(nèi)可微,故(x,ya,bcddu
fx(x,y)dxfy(x,y)dy0
fx(x,y)0,fy(x,y)0P0x0y0f(x,y)f(x0,y0)[f(x,y)f(x0,y)][f(x0,y)f(x0,y0fx(x01(xx0),y)(xx0)fy(x0,y02(yy0)(yy0 (011,021)f(xy)
f(x0y0)Cf(x,y取常數(shù)值C
f(x0,y0)設
在
,
在
,
f(x,y在
,
證 f(x0x,y0y)f(x0,y0f(x0x,y0y)f(x0x,y0)f(x0x,y0)f(x0,y0)y在(x0y0P0(x0y0Lagrange01f(x0x,y0y)f(x0x,y0)fy(x0x,y0y)yf在
,
fy
x,
y)f
,
fy(x0x,y0y)
fy(x0y0lim0x而對f(x0xy0f(x0y0,設(xf(xy0f(x0x,y0)f(x0,y0)(x0x)(x0),由于(x0)fx(x0,y0,故(xx0f(x0x,y0)f(x0,y0)(x0x)(x0(x0)x其中o(xx0
fx(x0,y0)xf(x0x,y0y)f(x0,y0)fy(x0,y0)yfx(x0,y0)xyy
0(0f(x,y在(x0,y0x2y(1)x2y(2)uxyyxuxsin(xy)ycos(xy)uexy解u1ln(x2y2),u
,由對稱性
2x2
x2
x2y2ux
y2x(x2y2)2
(x2y2)
(x2y2)2
2u
x2y2(x2y2)2(2)uyy,ux1 x 2
2u
1 x
0usin(xy)xcos(xy)ysin(xy)yxcos(xy)cos(xy)ysin(xy)
2cos(xy)xsin(xy)ycos(xy)cos(xy)xsin(xy)sin(xy)ycos(x
cos(x
xsin(x
y)
y)
ycos(x
y)y)2u
xsin(x
y)
2sin(x
y)
ycos(x
y)
2
2u
y
xye2u
x2exyu
siny
sinx
;x3yxu 1u
y
),求
x3
;yu
xyz
pqr;xryqzu
xyx
(xy
;xmynuln(axby
.xmyn解
u
3x
sinyy
cosx
6xsiny
sinx
6sinyy
cosx,
6cosy
cosxx3y
6siny
6ycosx,
6cosy6cosx
u
xy
1y
1y(1xy)2(x
1x1 1xyu
1y
,x
,
2(1y2
,
03u2(3x2
3u2(3y2
3u
,
00
u
2xcos(x
y2
2
)
y2)
12xsin(
)
y2)
y
)8y
cos(x
y2)(4)uyzexyzxyzexyz(x1)yzexyz
xy
(x1)
xy
(x2)
xyz
(xp)
xyzxp
(x
xy
(xp)
xy
(xp)(y
xyz
pquxp
(xp)(y
xyzxpyq
(xp)(y
xy
(xp)(y
xy(xp)(yq)(z1)exyz
pqrxpyqz
(xp)(yq)(z
xyzu 2 mu2(1)mm!
(x
m1u
(xm
(使用數(shù)學歸納法x
m!(xy)m2m2xmy
m!(m1)(2xmy)(xy)xmy
m!(m1)(m2)(3xmy)(x
(mn
nx.xmyn
(xy)x(ba)(6)xx(ba)
(a0)xmu(1)m1(m1)!(1)m1(m1)!am(1)m1(m1)!a
(xa
(ax
bm(y
ab
xmyn
(1)m1(m1)!amm(m1)(mnbm(yab(1)mn1(mn.(ax
2u2ux y 0(1)uln(x2y2)(2)ux2y2uexcosyuarctanyx
2u2(y2x2
2u2(x2y2
2u2u1(1
x
(x
22y2 22
(x2
)2
x
y 0u u 2x 2 2y
所 0
x
y
2ux2u2u
cosy,x2
cosy,y
sinyy ecosy
0u
2u
1
yx
)x x2y
,
(x2y2)2u 1
2u
1
y)2x
x2y2,
(x2y2)22u2u
0設函數(shù)u(xyu
u.x yx證明u(xyu(xy)) 2u(x u 2
(y)),
(
(y)u
(x
xu2u
(
(
(y)yx
(
(
(y))u即
u.x yx19.fx,fy在點(x0y0的某鄰域內(nèi)存在且在點(x0,y0fxy(x0,y0)fyx(x0,y0)證明16.4fxy(x0,y0fyx(x0,y0
f(x0x,y0y)f(x0,y0y)f(x0x,y0)f(x0,y0f,f在(x
處的可微性,下面證明
f(x
)
f(x,
)
x
51
61二者對充分小的xy同時成立,且當x0y0i0i16011.于是令xy0 (*(**)(y)f(x0x,y)f(x0,y)W式11
W
y)(
)]
1[
x,
y)f
(x0,
y)]
0
1fy在(x0y0fy(x0x,y0y)
fy(x0,y0)fyx(x0,y0)xfyy(x0,y01x2y其中1,20(當xy0時fy(x0,y0y)fy(x0,y0)fyy(x0,y0)y3y其中30(當y0時W
1{
x,
y)f
,
1{
,y0)
f
,
)x
f
,
)y1x
f(x,
)
fy(x0,y0)fyy(x0,y0)yyy
這正是(*)式.同樣,令(xf(x,y0yf(x,y0W
x)
1
1y{fx(x01x,y0y)fx(x01x,y0)}1
011fx在(x0y0fx(x01x,y0y)
fx(x0,y0)fxx(x0,y0)1xfxy(x0,y041x5y其中4,50(當xy0時fx(x01x,y0)fx(x0,y0)fxx(x0,y0)1x61xW
1{
1x,
y)f
1x,y01{f(x,
)
(x,y)x
(x,
)yx
4 fx(x0,y0)fxx(x0,y0)1x fxy(x0y041y561y,§2合函數(shù)與隱函數(shù)微分(1)u
f(ax,by)(2)uf(xy,xy)(3)uf(xy2,x2y)(4)u
f(xy
y)z(5)uf(x2y2z2);(6)u
f(xy,
x)y解(1)uf(axbyaaf(axbyu
(ax,by)b
(ax,by) 2u
(ax,by)
af11(ax,
2u
abf21(ax,by),
f22(ax,by)(2)u
f1(xy,xy)f
(xy,xy)yf1(xy,xy)f2(xy,xy)
(xy,xy)
(xy,xy)f
(xy,xy)f
(xy,xf11(xy,xy)2f12(xy,xy)f22(xy,xy),
(xy,xy)
(xy,xy)
f
(xy,xy)f
(xy,xf11(xy,xy)f22(xy,xy)
(xy,xy)
(xy,xy)f
(xy,xy)f
(xy,xf11(xy,xy)f22(xy,xy)2u
(xy,xy)
(xy,xy)
(xy,xy)
(xy,x2f11(xy,xy)2f12(xy,xy)f22(xy,xy)2(3)uy22 2
(xy2,x2y)
(xy2,x2y)u2xyf(xy
,x
y)x
f2
,x
y);2u
y2[y
f11
,x
y)2xyf12
,x
y)]2yf2
,x2 2222xy[y2f(xy2,x2y)2xyf(xy2,x2 222 2222y4f(xy2,x2y)4xy3f(xy2,x2y)4x2y2f(xy2,x2y)2yf(xy2,x 2222
2yf1
,x
y)
[2xyf11
,x
y)x
f12
,x
2xf2(xy2,x2y)2xy[2xyf21(xy2,x2y)x2f22(xy2,x2 2xy3f(xy2,x2y)5x2y2f(xy2,xy)2x3yf(xy2, 2yf(xy2,x2y)2xf(xy2,x2y)
2yf1
2,x2
y)2xy[y
2f112
,x
y)2xyf12
2,x2
2xf(xy2,x2y)x2[y2f(xy2,x2y)2xyf(xy2,x 2xy3f(xy2,x2y)5x2y2f(xy2,xy)2x3yf(xy2, 2yf(xy2,x2y)2xf(xy2,x2y) 2u
2xf1
2,x2
y)2xy[2xyf11
2,x2
x
f12
2,x2
x2[2xyf(xy2,x2y)x2f(xy2,x2 4x2y2
(xy2,x2y)4x3
(xy2,x2y)x4
(xy2,x2y)2xf(xy2,x2y).1 x 1
x x
x(4)x
f ) y
)y
f2 ) y z
f2 )y2ux y
f11(y
y)z
x
f ) y y
f11 )
f12 zy
f1(y
y)
f11(y
y)
f12(y
y)z2u x
x y y
y(2)f12 )
f12 )y2u
x
1 x
f ) y y
f11 )
yy2u
f1(yx
y) y2x2
f11(yx
y)zx
yzf121
x,y)yx
y3f1(y,z)
[y
f11(y,z)
f12(y,z1[x
f21(y
y)
f22(y
yz 3f1
y)
f11
y)
2f12 2
y)
2f22 2
y)24 y 242u x
y y
y yx x
f ) ) )f )y y y
) y x
f12(y
y)
f2(y
y)
f22(y
y)z2u
y
y x
z
z
f12 )z y
x
x x
z2f2(y
) z
f21(y,z)
f22(y,zz2
f2(y
y)z
f12(y
y)
f22(y
y)z2u2 x x
x y x
z3f2(y,z)z
f22(y
)
)y
f2(y,z)z
f22(y,z)2u2xf(x2y2z22
2yf(x
u2zf(x2y2z2),,
2
(x
y
z
)4x
f(x
y
z2),
2u
4xyf(x
z),xzzx4xzf(x
z) 2
(x
y
z
)4y
f(x
y
z2)
4
(x
y
z2)
2
(x
y
z
)4zx
f(x
y
z2) (6)xf1(xy,xy,y)yf2(xy,xy,y)yf3(xy,xy,y)
yf1(xy,xy,y)xf2(xy,xy,y)y2f3(xy,xy,y)2u
f11(xy,xy,y)yf129xy,xy,y)
f13(xy,xy,yy[
(xy,xy,x)
(xy,xy,x)1
(x
y
y, y1[
(xy,xy,x)
(xy,xy,x)1
(x
y
y, yf(xy,xy,x)2
(xy,xy,x)2
(x
y
y, yy2
(xy,xy,x)2
(xy,xy,x)
(x
xy, )y
2u
f11(xy,xy,y)xf12(xy,xy,y)y
f13(xy,xy,yf
(xy,xy,x)y[
(xy,xy,x)
(x
y, yx
(x y
y,xy,y)](y2)f3(xy,xy,y)y[f31(xy,xy,y
(xy,xy,x) y
(x
y, yf
(x
y, )xyx
f3(x
y, y
(x
y, y(xy)
(x y(x
(x y
y, y xyf22(xy,xy,y)y3f33(xy,xy,y)2u
f11(xy,xy,y)xf12(xy,xy,y)y
f13(xy,xy,yx[
(x
xy, y
(x
y, )xyx
(x
xy, y2xf(x y3
y,xy,y)y2[f31(xy,xy,y)xf32(xy,xy,yxy
(x
y, y2xf(x y3
y,xy,y)f11(xy,xy,y)2xf12(xy,xy,yy
f(xy,xy,x)x
f(xy,xy,x)
2xy
f(x y,xy,f(xxy
f(x y,f(x (f對各自變量的二階混合偏導數(shù)與求導次序無關z
f(x2y2
f1zx
1zzy y證 z
f2(x2y2
f(x
y
)2x
2xyf(x2y2,f2(x2y2z
f2(x2y2
f(x2y2)(2y)
f(x2y22y2f(x2y2)f2(x2y2
f(x2y2)1z1z2yf(x2y2)2yf(x2y2) x y f2(x2y2 f2(x2y2 yf(x2y2 y2f(x2y2 yx2y2z設v1g(tr),c為常數(shù),函數(shù)x2y2z 2v2v2v1
c2t證明v
g(t
r)
1
(t
r) r2x2r2x2y2z
g(tr)1g(tr)(
r3
cx2y2cx2y2zc
g(tr)cr3x3r22v
g(tr)
r2x2rr
g(tr
rxg(tr)r
x)
g(tr)(x 3x2rr
g(t
r)c
3x2r
g(t
r)c
xc2r
g(t
r)c2由函數(shù)vxyz22v3y2r
g(t
r)
3y2r
g(t
r)
g(t
r)
r3z2rr
g(t
r)c
3z2r
g(t
r)c
c2rzc2r
g(tr)c2v2v2v3(x2y2z2)3r
r 3(x2y2z2)3r
g(t
r)c
x2y2z
g(trcc2r
g(t
r)
.f(xyztf(tx,ty,tz)tnf(x,y,z),f(xyznf(xyzf(x,y為n
x
y
z
nf(x,y,z)證明f(x,ynf(txtytztnf(xyz對t求導
xf(tx,ty,tz)yf(tx,ty,tz)zf(tx,ty,tz)ntn1f(x,y, 令txtytzf(,,)
f2(,,)
f3(,,)
ft
,,)
t
f(,,)再把x,y,zx
y
z
nf(x,y,z)f(x,yzx
y
z
nf(x,yz(x,y,z),下面的t的函數(shù)F(t)
f(tx,ty,tz),(t0)t它在t0時有定義且是可微的,對tF(t)
tn
(tx,ty,tz)yf
(tx,ty,tz)zf
(tx,ty,tz)}
f(tx,ty,t
(tx,ty,tz)tyf
(tx,ty,tz)tzf
(tx,ty,tz)nf(tx,ty,0從而當t0F(tc(與tF(t的等式中令t1,得cF(1)
f(x,y,z)
F(t)
f(tx,ty,tz)f(x,y,z)tf(txty,tztnf(x,yzf(x,yz為n
(1)u
yyxxy0 (2)u
y)yxxyy(3)ux(xyy(xy
2ux
y
0 2
2(4)ux()()
0
解(1)u(x2y22x2x(x2y2u2y(x2y2 yuxu2xy(x2y2)2xy(x2y2)0 (2)u2xy(x2y2u(x2y22y2(x2y2 yuxu2xy2(x2y2)x(x2y2)2xy2(x2y2)xu (3)u(xy)x(xy)y(xy)ux(xy)(xy)y(xy) 2u2(xy)x(xy)y
y)
(xy)x(xy)(x
y)
y(x
y)2ux(xy)2
y) 2
2u(2(xy)x(xy)y
2((xy)x(xy)(xy)y(x(x(xy)2(xy)y(x0
u
y)x(
yx
y)x
y)x
y)x
yx
y)x
yx
y)xu
1y( ( 2u
yx
y)x
yx
y)x
y2x32
y)x
2y
(y)x
y(y2x 2
y)x
2y
y)x
y22
y)x
yx
y)x
1x
y)x
yx3
y)x
1x
y)x
1
y)x xx2
yy2
y2x2
y)x
(y)x
y(y2x 22yx
y)x
2y
(y)x
2y2x
(y)x
y2x2
y)x
y2x2
y)0x設uf(x,yxrcos yrsin
(u)2 r
u(
(u
(u)22u1u1
2u
r r r2
證 rxcosysin x(rsin)y(rcos)xrsinrcosy(u)2
1(u)2
cos
sin)2
1(
rsinrcosf)2 r2 r (f)2cos2(f)2sin22f
sin x(f)2sin22ffsincos(f)2cos2 x (f)2(f)2(u)2(u)2 2ur
2(
cos
2
sin)cos
2
cos
2
sin)2
2
sincos
2
sin2
2[x
(rsin)
2
rcos](rsin)
f(rcos2[
(rsin)
2
rcos]rcos
f(rsin2
r2sin
2
r2sincos
2
r2cos2 xrcosyrsin
2u1u1 r r22
2
sincos
2
sin2
1fr
cos
1fr
2
sin
2
sincos
2
cos2
1fr
cos
1fr
2
2
2u
zf(xyxucosvsin下(其中旋轉角是常數(shù)
yusinvz
z
(z
(z)2這時稱(x
(y
證明uxcosysinvxsinycos(z)2(z)2(fcos
sin)2(fsin
cos)2 f
f
u u(x
(y
(x)(y)設函數(shù)uf(xyLaplace2u2ux y 0
0(1)x
s2t
y s2txescost(3)x(s,t)
yessinty(st)滿足
,
.這組方程稱為u
t2s
u
s2t解
x(s2t2
y(s2t2)2,
x(s2t2
y(s2t2)22u
[
t2
2u
t2]
u2s(s23t2
x2(t2s2
(s2t2
(s2t2
(s2t2[
t2s
u2t(3s2t2yx(t2s2
(s2t2
(s2t2
y(s2t22u(t2s2)2
4st(t2s2)
4s2tx2(t2s2
(s2t2)4
(s2t2)2u2s(s23t2)u2t(3s2t22u
[
(s2t2
(s2t2s2t]
u2s(3t2s2t
x2(s2t2
xy(s2t2
(s2t2
(s2t2[
s2t
s2t]
u2t(t23s2yx(s2t2
(s2t2
(s2t2
y(s2t2)2
4s2t
4st(s2t2)
(s2t2
(s2t2
(s2t2)4
(s2t2)2u2s(3t2s2)u2t(t23s2 (s2t2
y(s2t22u2u2u(t2s2)24s2t22u4s2t2(s2t2)2
(t2s2
(s2t2)22u2u 0
u
costu
sint,
u
sintu
cost2us
2u[x2
cost
sin
cost
u
cos
cost
2uy2
sin
sint
u
sin
e2s
t
e2s
sintcost
e2s
sin2uescostuessin eses txs 2u ecost)ecost
sint
escos
sint
essin
e2s
sin
t
e2s
sintcost
e2s
cos2u
costu
sint
2u2u
2u
2s
y2 0 u u
u u x y
xtyt u
u
u
utx
y
sys2u
2u
)
u
(
2u
)
u,s
x2
xy
x
yx
y2
y(2u(
2u
)
u
(
2u
)
u,t
x2
xy
x
yx
y2
y
2u2u
(
)[(
(
)2]0
作自變量的變換,取,, (1)x,
yyxxy0(2)xyxzxuuu0 解(1)zf(xyg(,
g
g
g
g xx
x
x2x,yy
y
2y
0yxxyy(2x)x(2y)yz0z(z(x2y2(2)uf(xyzg(,, u u
u xx
xxuuuuu u u
u zz
zzuuu0u0.故u(,yxzx), 作自變量和因變量的變換,取uvww(uvuxy,v
y,wz 2zx
22
2y
0x設u ,x,xzy,變換方xy2yy
2
2x解(1)w
zwxzxzu uy yw wz zv vy y zwx(wuwv)wxwyw u
v
x w w yx(uyvy)xuv2zwyww
2
2 x2
xyw 2w2wx2
x
v2
x22
2 2
2
y22,
x
x3v2
ww1
2w
2w
1w
2w2w
v
x(u
uvx
x
x
v2x
2wxu2
y2w x)uv
2w,2z
2wx(u2
2wuvx)
2w
2wv2
)
2wu
2w
12w,x
20
22
2
(12y
2w3x3)v232w
w
u,是可微函數(shù),于是
uv
u,所以,zxwxxyy(xyy(xy(xy,其中、xx設u ,x,xzy,變換方程xy
2
2z wxzyzwyx 1w x
w w z 1
yuyu 1 xu
y2
y2 2
2 12w x 2 x2
y3
y2u2
y2
y3
y4u
y
2
2z y
w y
2w y
w2
x2 ,y3u 2w
w
即
0.解得 v,是任意可微函
u (v)
zwx
1 x
xx
y
x
1xy 其中、z
f(xy)(1)exy2zez0xyzexyzxyzzyzx2y2z22x2y4z50.解(1)xyyexy2zezz0,xexy2zezz0 z
xe
xez2
ez22z
y2exy(ez2)yexyez(ez
y2(e2z4ez4ezxyexy(ez2
2
(exyxyexy)(ez2)yexyez (ez
(1xy)(ez2)2,(ez2)3exy2zx2(e2z4ez4ezxy
exy(ezxy xyz z xyz
z1x 1x,1y
z1z
2z
2
2
02z0
xyyzxyz1z,xzxyz1z 1 1xxy1yxy12yz(xy1)(1yz)2z 2y(yz1),
(xyz
(xy1)2
z
y(xy1)(1(xy
(xy2z2x(xz
(xyxy2x2zz24z0,2y2zz24z0 z1x,z1y
z z(z2)(1x)2z
(z
,2
(z(1x) y(z
(1x)(1y)(z2)3
(z2,2
(z2)(1y) (z
(z2)2(1.(z.dzzf(xz,zy)F(xy,yz,zx)0f(xyz,x2y2z2)0f(x,y)g(y,z)0解(1)dz
f1(xz,zy)d(xz)f2(xz,zy)d(zf1(xz,zy)(zdxxdz)f2(xz,zy)(dzdzzf1(xzzy)dxf2(xzzy)dy1xf1(xz,zy)f2(xz,z(2)F1(xy,yz,zx)(dxdy)F2(xy,yz,zx)(dyF3(xy,yz,zx)(dzdx)dz
F3(xy,yz,zx)F1(xy,yz,zx)dxF3(xy,yz,zx)F2(xy,yz,zx)F1(xy,yz,zx)F2(xy,yz,zx)dyF3(xy,yz,zx)F2(xy,yz,z1f(xyz,x2y2z2)(dxdy12f(xyz,x2y2z2)(2xdx2ydy2zdz)2f(xyz,x2y2z2)2xf(xyz,x2y2z2 dz dx12f(xyz,x2y2z2)2zf(xyz,x2y2z212f(xyz,x2y2z2)2yf(xyz,x2y2z2 dy.12f(xyz,x2y2z2)2zf(xyz,x2y2z212f1(xy)dxf2(xy)dyg1yz)dyg2yz)dz0,所以dz
f1(x,y)dxg2(y,
f2(x,y)g1(y,z)dyg2(y,zz(xy
zxyzyf
2
y(x
z
)x2xyy2xz證明
xy
yf
x,y z1
y
z
zyz2x
yf
,2y
f yf yy
y
y y z z2y f f z
f y
,y
y f y
y (x2y2z2)z2xy
z
z
2y y
f (x2y2z2
z
2xy zf y
f y
4xzy 2xz.zf y zx2y2yd2dx2
f(xx2xyy21 dz=2x2ydy,又在方程x2xyy21兩邊對x求導, 2xyx
2y
0
2xyx2
dz
2x2
2xyx2
2(x2y2,x222x2ydy(x2y)2(x2y2)12dy2
dx
dx
(x2y)22(5x38x2y15xy28y3.(x2設ux2y2z2zf(xyx3y3z33xyz xx2解u2x2zzx3y3z33xyzx 3x2
2
3yz3xyzz
yzx,z2
u
2x
yzxz2
2(xy2x2yyz2x2z2
2z22xzz2xy2yzz2xzx2z(z2
(z22(xz2x2yyz2x2y)2zzy (z22(x5yx3y32x3y2zx4z23x2y2z23xy3z24x2yz33xyz4(z22(y2z42xz5z6.(z2xy)x2y2z2a2
(1)x2y2ax
xu2yv
(2)yv2xu0
u2v3xy
u2v
x2y
uxyz
x2y2z21 x
,y2,xydya2x2x2yy2zz0解(1)2x2yya
2 a 212uuyv0
2vyu
v2u22v
ux
0
x4uvxy,
4uvy2uuvyv0 2v2
2uxv
x
0
4uv
4uv2uuv
u12v1,v32u 4v y
1
1 12uuv
4v
4u 4v
2
y8uv1
y8uv1uyzxyz
z
yz2x22x2z y
0
uxzxyz
uxz22y2z
0
yz, 22
(2yzz2xy)z(yz2x2y)2u
3z2,
z z(z22yzzx2)z(yz2x2y)2u z
y
z4x2z2y2z2x2y,z(2xzz2xy)z(xz2xy2)2u z
y
xy(y23z2.zzxydzdzxcoscosycossin
xuv(2)yu2v2zsin
zu3v3解(1)方程組兩邊對x求偏導數(shù), 1sincosxcossinx 0sinsinxcoscosxzcos
cos,
sinzcoscot y 0sincosycossiny 1sinsinycoscosyzcos
,代入第三個方程 sincot 1xx
xvu 02ux2vxz3u2u3v2v
xvuz3uv3(yx2)
y 0yy
y2(vu) 12uy2vyz3u2u3v2v
y2(vu)z3(uv)3x
§3何應xasin2tybsintcostzccos2t,在點t42x23y2z29z23x2y2,在點(1,1,2x2y2z26xyz0,在點(1,2,1xtcosty3sin2tz1cost,在點t2解
t4
,對應的點為(y(y(
c)2x()2asint444
t
a,b(cos2tsin24
t
0z )2ccostsin4
4t4
c
t444
對應的點(2
c2x y z 2 2 2 axcz1(a2c22(2)F(xyz)2x23y2z29G(xyz)3x2y2z2為
Fz
6
F(x,y,z)0G(x,y,z)0 由 GG GG
z 6x 2
2z(F,G)6
2z16yz,(F,G)
4x20xz(y,
2
(z,
(F,G)
6y28xy(x,
2(16
x1y1z2 法平面方程為8(x110y17(z2)0,即8x10y7z12F(xyz)x2y2z26G(xyz)xyz
Fz
2
2z由 GG z 1GG(F,G)2
2z2(yz),(F,G)
2x2(zx)(y, (z, (F,G)
2y2(xy)(x, )x1y2z11 1(x1z1)0xz0t對應點為(,4,1x(1sin
222y()2sint2
0
z()3sin
t23t t
x
y z1 2(x3(z1)0,即2x3z32(1)ye2xz0,在點(1,1,2xa
y
zc
1在點(a,b
c)333z2x24y2在點(2,1,12333xucosv,yusinv,zavp0(u0v0.解(1)F(x,y,z)ye2xz,則法向量(F,F,F
(2e2xz,1,e2xz
z
2(x1y1z2)0即2xyz1x1y1z2
x y z(2)令F(x,y,z) a b2
1c b (F,F,F (,,
2x,, ,,
2(
,1
1))33)
(a,b,c
ab33333331所求的切平面方程(xa1y3331
b)1(z
c)0,即1x1y1z a3x y3
z
法線方程為 1a
1b
31cn(3)F(xyz)2x24y2zn
的切平面方程為8(x28y1z12)0,即8x8yz128x8yz12x2
y1z128
1 z
cos
sin 0(4)由
z v
usin
ucos a(y,(u,(y,(u,p0
a
asinv0
cos(y,(u,(y,(u,p
acosv0(y,(y,(u,usin
sinvucosp0p
u0n(asinv0,acosv0,u0p0(u0v0(x,y,z)(u0cosv0,u0sinv0,av0)asinv0(xu0cosv0acosv0yu0sinv0u0(zav00,即axsinv0aycosv0u0zau0v0,法線方程為:xu0cosv0asinv0
yu0sinacos
zav0xaetcostyaetsintzaetx2y2z2的母線相證明x2y2z2P(xyz因此,母線的方向向量為1(xyzP2(x(t),y(t),z(t))(aet(costsint),aet(sintcost),aet)(xy,xy,z)2 1212
x(xy)y(xy)z
2z x2x2y2z (xy)2(xy)2z2z 3z6, x3y3a33xy,
(a0)
2
1 解x3y
a
(a0x求導,有3
3 3
3 0 x在曲線上任一點(x0y0kx0
(x00yy0
(xx0)x0x1 1A(x3a30B(0,y3a3 2 24 400dAB(x3a3y3a3)2(a3a3 00ax22y23z221x4y6z000解x22y23z221P00
,
,
n(2x0,4y0,6z0)x4y6z01
44
6z0
z0P(xy
x22y23z221P(1,2,2
1x14y26(z2)0,x4y6z21為所求切平面方程.F(xazybz)0的切平面與某一定直線平行,其中ab證 G(x,y,z)F(xaz,ybz),則曲面為G(x,y,z)0,曲面上任意一P0(x0,y0z0n(Gx,Gy,Gz0
nab,10nab,1,故曲面過P0點的切平面平行于方向向量為ab,1F(xazybz0的切平面與一方向向量為axzxeyx00證明F(xyz)xeyzP00
,
,
n(Fx,Fy,Fz 0
x0 x20ey0(10)(xx0
)0 y20y2 zxey0 x
x2 x02(10)ey0x0ey0yz02y yF(x,y,z)0,G(x,y,z)的交線在OxyF(x,y,z)0解G(x,y,z)
P0(x0y0z0(F,((F,(y,(F,(z,(F,(x,
y
z F(xyz)0,G(xyz)0的交線在Oxy x
y (F,(z,(F,(z, (y,0§4向導0f(xyzxy2z3fP(1,1,1沿方向l2,2,10 由 1 2y 3z
,故
(1,2,3)
xy0l0l1l1(2,2,1),所 l03 3求函數(shù)uxyzA(5,1,2B(9,4,14AB解uyzuxzuxy (u,u,u
(2,10,5),l
AB
Axy A
(2,10,5)
(4,3,12)98
(x,y0 (1)ulnx2y2xy)(1,1lx軸正向的夾角為600 (2)uxexy(xy1,1l與向量(1,1 解
x2y
2x2y
,u
2
x2 x2
(x,y
x2y
(x,y0 000
l(cos600,sin600)
(1 3)2
1 3x,y3
l0(1,1)(
) 2(x,y
0(2)uexy(1xyux2exy
u,y
(1xy),
(2e,e) (x,y02l02
1212121212
(2e,e)
1212
32e2設函數(shù)f(xy)
,
)可微,單位向量l1
),
)75f(x0,y0)1,f(x0,y0)0,確定l使得:f(x0,y0)75解
f(x0,y0) f(x0f(x0,y0) f(x0,y0) 1 f(x,y f(x,y f(x,y) 0 0 0 ) ,22 22解出,f(x0,y0)f(x0,y0) 2 f(x0y0)
,即2
2
7,再由2217575 7575出(45
或((3
,即l5
(45
或l3
5fP0(2,0f(xyP0P12,2的方向導數(shù)是1,指向原點的方向導數(shù)是3,試回答:P33,21f(2,0)0f(2,0)(1)
f(2,0)3
解由 3
f
f
0
f
f
0
f
1f(2,0)
f(2,0) 15255 15255§5Taylor(1)f(xy)2x2xyy26x3y5在(1,2(2)f(xyx2xyy23x2y4在(1,1解
4xy6,
2x2y
24,
2,y
2,高于二階偏導數(shù)均為0在(1,2)點,f(1,2) ,
20
4
2
12y
2
f(x,y)2(x1)2(x1)(y2)(y2)25
2xy3,
x2y2
2
2
2
2
2
1
2
2
2
1,2
2f(x,y)2(x1)(y1)(x1)2(x1)(y1)(y1)2f(xy)
y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 影視行業(yè)制作管理與后期剪輯方案
- Unit8 lesson 6教學設計 - 2024-2025學年冀教版英語七年級上冊
- 川教版三上信息技術3.2 添加角色 教學設計
- 全國冀教版信息技術四年級上冊新授課 第7課 Internet Explorer下載 教學設計
- 2025年簡易網(wǎng)站服務合同5篇
- 19 食物與營養(yǎng) 教學設計-2024-2025學年科學三年級上冊蘇教版
- 電子支付商戶合作協(xié)議8篇
- 標準駕校培訓合同范本8篇
- 河南砂漿環(huán)氧地坪施工方案
- 小學二年級數(shù)學100以內(nèi)加減法豎式計算競賽考核口算題帶答案
- 村光伏發(fā)電申請書
- 腰椎間盤突出癥中醫(yī)特色療法課件
- 施工現(xiàn)場專項消防安全檢查表
- 如何當好學校的中層干部
- 2022-2023學年廣東省佛山市順德區(qū)高三(下)模擬英語試卷
- 鋼結構廠房吊裝安裝監(jiān)理控制要點演示文稿
- 無權代理與表見代理
- 創(chuàng)傷的現(xiàn)場檢傷分類法傷情程的快速評估方法
- Topic+1+Personal+information(個人情況)-2023年中考英語話題復習精美課件
- 2023年高考數(shù)學大招9蒙日圓及其證明
- 節(jié)后復工培訓內(nèi)容五篇
評論
0/150
提交評論