版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TwoDimensionalGaugeTheories
and
QuantumIntegrableSystems
NikitaNekrasovIHESImperialCollegeApril10,2008
TwoDimensionalGaugeTheorie1BasedonNN,S.Shatashvili,toappearPriorwork:E.Witten,1992;A.Gorsky,NN;J.Minahan,A.Polychronakos;M.Douglas;~1993-1994;A.Gerasimov~1993;G.Moore,NN,S.Shatashvili~1997-1998;A.Losev,NN,S.Shatashvili~1997-1998;A.Gerasimov,S.Shatashvili~2006-2007BasedonNN,S.Shatashvili,to2
Wearegoingtorelate
2,3,and4dimensional
susygaugetheories
withfoursupersymmetries
N=1d=4
AndquantumintegrablesystemssolublebyBetheAnsatztechniques.
Wearegoingtorelate
2,3,3
Mathematicallyspeaking,thecohomology,K-theoryandellipticcohomologyofvariousgaugetheorymodulispaces,likemoduliofflatconnectionsandinstantonsAndquantumintegrablesystemssolublebyBetheAnsatztechniques.
Mathematicallyspeaking,the4Forexample,weshallrelatetheXXXHeisenbergmagnetand2dN=2SYMtheorywithsomematterForexample,weshallrelatet5(pre-)HistoryIn1992E.WittenstudiedtwodimensionalYang-Millstheorywiththegoaltounderstandtherelationbetweenthephysicalandtopologicalgravitiesin2d.(pre-)History6(pre-)HistoryTherearetwointerestingkindsofTwodimensionalYang-Millstheories(pre-)HistoryTherearetwo7Yang-Millstheoriesin2d(1)
CohomologicalYM=twistedN=2super-Yang-Millstheory,withgaugegroupG,whoseBPS(orTFT)sectorisrelatedtotheintersectiontheoryonthemodulispaceMGofflatG-connectionsonaRiemannsurfaceYang-Millstheoriesin2d(1)8Yang-Millstheoriesin2dN=2super-Yang-MillstheoryFieldcontent:
Yang-Millstheoriesin2dN=2s9Yang-Millstheoriesin2d(2)PhysicalYM=N=0Yang-Millstheory,withgaugegroupG;ThemodulispaceMGofflatG-connections=minimaoftheaction;Thetheoryisexactlysoluble(A.Migdal)withthehelpofthePolyakovlatticeYMactionYang-Millstheoriesin2d(2)10Yang-Millstheoriesin2dPhysicalYMFieldcontent:Yang-Millstheoriesin2dPhysi11Yang-Millstheoriesin2dWittenfoundawaytomaptheBPSsectoroftheN=2theorytotheN=0theory.Theresultis:Yang-Millstheoriesin2dWitte12Yang-Millstheoriesin2dTwodimensionalYang-MillspartitionfunctionisgivenbytheexplicitsumYang-Millstheoriesin2dTwod13Yang-Millstheoriesin2dInthelimitthepartitionfunctioncomputesthevolumeofMG
Yang-Millstheoriesin2dInth14Yang-Millstheoriesin2dWitten’sapproach:addtwistedsuperpotentialanditsconjugateYang-Millstheoriesin2dWitte15Yang-Millstheoriesin2dTakealimitInthelimitthefieldsareinfinitelymassiveandcanbeintegratedout:oneisleftwiththefieldcontentofthephysicalYMtheory
Yang-Millstheoriesin2dTake16Yang-Millstheoriesin2dBothphysicalandcohomologicalYang-Millstheoriesdefinetopologicalfieldtheories(TFT)Yang-Millstheoriesin2dBoth17Yang-Millstheoriesin2dBothphysicalandcohomologicalYang-Millstheoriesdefinetopologicalfieldtheories(TFT)Vacuumstates+deformations=quantummechanicsYang-Millstheoriesin2dBoth18YMin2dandparticlesonacirclePhysicalYMisexplicitlyequivalenttoaquantummechanicalmodel:freefermionsonacircleCanbecheckedbyapartitionfunctiononatwo-torusGrossDouglasYMin2dandparticlesonaci19YMin2dandparticlesonacirclePhysicalYMisexplicitlyequivalenttoaquantummechanicalmodel:freefermionsonacircleStatesarelabelledbythepartitions,forG=U(N)YMin2dandparticlesonaci20YMin2dandparticlesonacircleForN=2YMthesefreefermionsonacircleLabelthevacuaofthetheorydeformedbytwistedsuperpotentialWYMin2dandparticlesonaci21YMin2dandparticlesonacircleThefermionscanbemadeinteractingbyaddingalocalizedmatter:forexampleatime-likeWilsonloopinsomerepresentationVofthegaugegroup:YMin2dandparticlesonaci22YMin2dandparticlesonacircleOnegetsCalogero-Sutherland(spin)particlesonacircle(1993-94)A.Gorsky,NN;J.Minahan,A.Polychronakos;YMin2dandparticlesonaci23HistoryIn1997G.Moore,NNandS.Shatashvilistudiedintegralsovervarioushyperkahlerquotients,withtheaimtounderstandinstantonintegralsinfourdimensionalgaugetheoriesHistoryIn1997G.Moore,NNand24HistoryIn1997G.Moore,NNandS.Shatashvilistudiedintegralsovervarioushyperkahlerquotients,withtheaimtounderstandinstantonintegralsinfourdimensionalgaugetheoriesThiseventuallyledtothederivationin2002oftheSeiberg-WittensolutionofN=2d=4theoryInspiredbytheworkofH.NakajimaHistoryIn1997G.Moore,NNand25Yang-Mills-HiggstheoryAmongvariousexamples,MNSstudiedHitchin’smodulispaceMHYang-Mills-HiggstheoryAmongv26Yang-Mills-HiggstheoryUnlikethecaseoftwo-dimensionalYang-MillstheorywherethemodulispaceMGiscompact,Hitchin’smodulispaceisnon-compact(itisroughlyT*MGmodulosubtleties)andthevolumeisinfinite.Yang-Mills-HiggstheoryUnlike27Yang-Mills-HiggstheoryInordertocurethisinfnityinareasonablewayMNSusedtheU(1)symmetryofMHThevolumebecomesaDH-typeexpression:WhereHistheHamiltonianYang-Mills-HiggstheoryInorde28Yang-Mills-HiggstheoryUsingthesupersymmetryandlocalizationtheregularizedvolumeof
MHwascomputedwiththeresultYang-Mills-HiggstheoryUsingt29Yang-Mills-HiggstheoryWheretheeigenvaluessolvetheequations:Yang-Mills-HiggstheoryWhere30YMHandNLSTheexpertswouldimmediatelyrecognisetheBetheansatz(BA)equationsforthenon-linearSchroedingertheory(NLS)NLS=largespinlimitoftheSU(2)XXXspinchainYMHandNLSTheexpertswouldi31YMHandNLSMoreovertheNLSHamiltoniansarethe0-observablesofthetheory,likeTheVEVoftheobservable=TheeigenvalueoftheHamiltonianYMHandNLSMoreovertheNLSHa32YMHandNLSSince1997nothingcameoutofthisresult.Itcouldhavebeensimplyacoincidence.…….YMHandNLSSince1997nothing33In2006
A.GerasimovandS.ShatashvilihaverevivedthesubjectHistoryIn2006
A.GerasimovandS.Sha34YMHandinteractingparticlesGSnoticedthatYMHtheoryviewedasTFTisequivalenttothequantumYangsystem:Nparticlesonacirclewithdelta-interaction:YMHandinteractingparticlesG35YMHandinteractingparticlesThus:YMwiththematter--fermionswithpair-wiseinteractionYMHandinteractingparticlesT36HistoryMoreimportantly,GSsuggestedthatTFT/QISequivalenceismuchmoreuniversalHistoryMoreimportantly,37TodayWeshallrederivetheresultofMNSfromamodernperspectiveGeneralizetocovervirtuallyallBAsolublesystemsbothwithfiniteandinfinitespinSuggestnaturalextensionsoftheBAequationsTodayWeshallrederivetheres38HitchinequationsSolutionscanbeviewedasthesusyfieldconfigurationsfortheN=2gaugedlinearsigmamodelForadjoint-valuedlinearfieldsHitchinequationsSolutionscan39HitchinequationsThemodulispaceMHofsolutionsisahyperkahlermanifoldTheintegralsoverMHarecomputedbythecorrelationfunctionsofanN=2d=2susygaugetheoryHitchinequationsThemodulisp40HitchinequationsThekahlerformonMHcomesfromtwistedtreelevelsuperpotentialTheepsilon-termcomesfromatwistedmassofthemattermultipletHitchinequations41GeneralizationTakeanN=2d=2gaugetheorywithmatter,InsomerepresentationR
ofthegaugegroupGGeneralizationTakeanN=2d=242GeneralizationIntegrateoutthematterfields,computetheeffective(twisted)super-potentialontheCoulombbranchGeneralizationIntegrateoutth43MathematicallyspeakingConsiderthemodulispaceMRofR-HiggspairswithgaugegroupGUptotheactionofthecomplexifiedgaugegroupGCMathematicallyspeakingConside44MathematicallyspeakingStabilityconditions:UptotheactionofthecompactgaugegroupGMathematicallyspeakingStabili45MathematicallyspeakingPushforwardtheunitclassdowntothemodulispaceMGofGC-bundlesEquivariantlywithrespecttotheactionoftheglobalsymmetrygroupKonMR
MathematicallyspeakingPushfor46MathematicallyspeakingThepushforwardcanbeexpressedintermsoftheDonaldson-likeclassesofthemodulispaceMG2-observablesand0-observablesMathematicallyspeakingThepus47MathematicallyspeakingThepushforwardcanbeexpressedintermsoftheDonaldson-likeclassesofthemodulispaceMG2-observablesand0-observablesMathematicallyspeakingThepus48MathematicallyspeakingThemassesaretheequivariantparametersFortheglobalsymmetrygroupK
MathematicallyspeakingThemas49VacuaofthegaugetheoryDuetoquantizationofthegaugefluxForG=U(N)VacuaofthegaugetheoryDuet50VacuaofthegaugetheoryEquationsfamiliarfromyesterday’slectureForG=U(N)partitionsVacuaofthegaugetheoryEquat51VacuaofthegaugetheoryFamiliarexample:CPNmodel(N+1)chiralmultipletofcharge+1Qii=1,…,N+1U(1)gaugegroupN+1vacuumFieldcontent:Effectivesuperpotential:VacuaofthegaugetheoryFamil52VacuaofgaugetheoryGaugegroup:G=U(N)Matterchiralmultiplets:1
adjoint, massfundamentals, massanti-fundamentals, massFieldcontent:Anotherexample:VacuaofgaugetheoryGaugegro53VacuaofgaugetheoryEffectivesuperpotential:VacuaofgaugetheoryEffective54VacuaofgaugetheoryEquationsforvacua:VacuaofgaugetheoryEquations55VacuaofgaugetheoryNon-anomalouscase:Redefine:VacuaofgaugetheoryNon-anoma56VacuaofgaugetheoryVacua:VacuaofgaugetheoryVacua:57Gaugetheory--spinchainIdenticaltotheBetheansatzequationsforspinXXXmagnet:Gaugetheory--spinchainIden58Gaugetheory--spinchainVacua=eigenstatesoftheHamiltonian:Gaugetheory--spinchainVacu59TableofdualitiesXXXspinchainSU(2)LspinsNexcitationsU(N)d=2N=2Chiralmultiplets:1adjointLfundamentalsLanti-fund.Specialmasses!TableofdualitiesXXXspincha60Tableofdualities:mathematicallyspeakingXXXspinchainSU(2)LspinsNexcitations(Equivariant)IntersectiontheoryonMR
for
Tableofdualities:mathematic61TableofdualitiesXXZspinchainSU(2)LspinsNexcitationsU(N)d=3N=1Compactifiedonacircle
Chiralmultiplets:1adjointLfundamentalsLanti-fund.TableofdualitiesXXZspincha62Tableofdualities:
mathematicallyspeakingXXZspinchainSU(2)LspinsNexcitationsEquivariantK-theoryofthemodulispace
MRTableofdualities:
mathemati63TableofdualitiesXYZspinchainSU(2),L=2NspinsNexcitationsU(N)d=4N=1Compactifiedona2-torus=ellipticcurveE
Chiralmultiplets:1adjointL=2NfundamentalsL=2Nanti-fund.Masses=wilsonloopsoftheflavourgroup=pointsontheJacobianofETableofdualitiesXYZspincha64Tableofdualities:
mathematicallyspeakingXYZspinchainSU(2),L=2NspinsNexcitationsEllipticgenusofthemodulispaceMRMasses=KbundleoverE=pointsontheBunKofETableofdualities:
mathemati65TableofdualitiesItisremarkablethatthespinchainhaspreciselythosegeneralizations:rational(XXX),trigonometric(XXZ)andelliptic(XYZ)thatcanbematchedtothe2,3,and4dimcases.
TableofdualitiesItisremark66AlgebraicBetheAnsatzThespinchainissolvedalgebraicallyusingcertainoperators,WhichobeyexchangecommutationrelationsFaddeevetal.Faddeev-Zamolodchikovalgebra…AlgebraicBetheAnsatzThespin67AlgebraicBetheAnsatzTheeigenvectors,Bethevectors,areobtainedbyapplyingtheseoperatorstothe?
fake
?vacuum.AlgebraicBetheAnsatzTheeige68ABAvsGAUGETHEORYForthespinchainitisnaturaltofixL=totalnumberofspinsandconsidervariousN=excitationlevelsInthegaugetheorycontextNisfixed.ABAvsGAUGETHEORYForthespi69ABAvsGAUGETHEORYHowever,ifthetheoryisembeddedintostringtheoryviabranerealizationthenchangingNiseasy:bringinanextrabrane.Hanany-Hori’02ABAvsGAUGETHEORYHowever,if70ABAvsGAUGETHEORYMathematicallyspeakingWeclaimthattheAlgebraicBetheAnsatzismostnaturallyrelatedtothederivedcategoryofthecategoryofcoherentsheavesonsomelocalCYABAvsGAUGETHEORYMathematica71ABAvsSTRINGTHEORYTHUS:BisforBRANE!isforlocation!ABAvsSTRINGTHEORYTHUS:i72MoregeneralspinchainsTheSU(2)spinchainhasgeneralizationstoothergroupsandrepresentations.IquotethecorrespondingBetheansatzequationsfromN.ReshetikhinMoregeneralspinchainsTheSU73Generalgroups/repsForsimply-lacedgroupHofrankrGeneralgroups/repsForsimply-74Generalgroups/repsForsimply-lacedgroupHofrankrLabelrepresentationsoftheYangianofHA.N.Kirillov-N.ReshetikhinmodulesCartanmatrixofHGeneralgroups/repsForsimply-75Generalgroups/reps
fromGAUGETHEORYTaketheDynkindiagramcorrespondingtoHAsimply-lacedgroupofrankrGeneralgroups/reps
fromGAUGE76
QUIVERGAUGETHEORYSymmetries
QUIVERGAUGETHEORYSymmetries77
QUIVERGAUGETHEORYSymmetries
QUIVERGAUGETHEORYSymmetries78
QUIVERGAUGETHEORY
ChargedmatterAdjointchiralmultipletFundamentalchiralmultipletAnti-fundamentalchiralmultipletBi-fundamentalchiralmultiplet
QUIVERGAUGETHEORY
Chargedm79QUIVERGAUGETHEORYMatterfields:adjointsQUIVERGAUGETHEORYMatterfiel80QUIVERGAUGETHEORYMatterfields:fundamentals+anti-fundamentalsQUIVERGAUGETHEORYMatterfiel81QUIVERGAUGETHEORYMatterfields:bi-fundamentalsQUIVERGAUGETHEORYMatterfiel82QUIVERGAUGETHEORYQuivergaugetheory:fullcontentQUIVERGAUGETHEORYQuivergaug83QUIVERGAUGETHEORY:MASSESAdjointsiQUIVERGAUGETHEORY:MASSESAdj84QUIVERGAUGETHEORY:MASSESFundamentalsAnti-fundamentalsia=1,….,Li
QUIVERGAUGETHEORY:MASSESFun85QUIVERGAUGETHEORY:MASSESBi-fundamentalsijQUIVERGAUGETHEORY:MASSESBi-86QUIVERGAUGETHEORYWhatissospecialaboutthesemasses?QUIVERGAUGETHEORYWhatisso87QUIVERGAUGETHEORYFromthegaugetheorypointofviewnothingspecial…..QUIVERGAUGETHEORYFromthega88QUIVERGAUGETHEORYThemasspuzzle!QUIVERGAUGETHEORYThemasspu89ThemasspuzzleTheBetheansatz--likeequationsCanbewrittenforanarbitrarymatrixThemasspuzzleTheBetheansat90ThemasspuzzleHowevertheYangiansymmetryY(H)wouldgetreplacedbysomeuglyinfinite-dimensional?
free
?algrebawithoutnicerepresentations
ThemasspuzzleHowevertheYan91ThemasspuzzleThereforeweconcludethatourchoiceofmassesisdictatedbythehiddensymmetry--thatofthedualspinchain
ThemasspuzzleThereforeweco92TheStandardModelhasmanyfreeparametersAmongthemarethefermionmassesIstherea(hidden)symmetryprinciplebehindthem?TheStandardModelhasmanyfr93TheStandardModelhasmanyfreeparametersInthesupersymmetricmodelsweconsideredthemasstuningcanbe?
explained
?usingadualitytosomequantumintegrablesystemTheStandardModelhasmanyfr94Furthergeneralizations:
Superpotential
fromprepotentialTreelevelpartInducedbytwistFluxsuperpotential(Losev,NN,Shatashvili’97)TheN=2*theoryonR2XS2Furthergeneralizations:
Super95Superpotential
fromprepotentialMagneticfluxElectricfluxInthelimitofvanishingS2themagneticfluxshouldvanishSuperpotential
fromprepotent96InstantoncorrectedBAequationsEffectiveS-matrixcontains2-body,3-body,…interactionsInstantoncorrectedBAequatio97InstantoncorrectedBAequationsInstantoncorrectedBAequatio98InstantoncorrectedBAequationsTheprepotentialofthelow-energyeffectivetheoryIsgovernedbyaclassical(holomorphic)integrablesystemDonagi-Witten’95Liouvilletori=JacobiansofSeiberg-WittencurvesInstantoncorrectedBAequatio99Classicalintegrablesystem
vs
QuantumintegrablesystemThatsystemisquantizedwhenthegaugetheoryissubjecttotheOmega-backgroundNN’02NN,Okounkov’03Braverman’03Ourquantumsystemisdifferent!Classicalintegrablesystem
vs100Blowingupthetwo-sphereWall-crossingphenomena(newstates,newsolutions)SomethingforthefutureBlowingupthetwo-sphereWall-101NaturalnessofourquiversSomewhatunusualmattercontentBranesatorbifoldstypicallyleadtosmthlikeNaturalnessofourquiversSome102NaturalnessofourquiversThispicturewouldariseinthesa(i)
0
limitBAforQCDFaddeev-Korchemsky’94NaturalnessofourquiversThis103NaturalnessofourquiversOtherquivers?NaturalnessofourquiversOthe104NaturalnessofourquiversPossiblywiththehelpofK.Saito’sconstruction
NaturalnessofourquiversPoss105CONCLUSIONSWefoundtheBetheAnsatzequationsaretheequationsdescribingthevacuumconfigurationsofcertainquivergaugetheoriesintwodimensionsThedualitytothespinchainrequirescertainrelationsbetweenthemassesofthematterfieldstobeobeyed.Thiscouldhavephenomenologicalconsequences.CONCLUSIONSWefoundtheBethe106CONCLUSIONS3.ThealgebraicBetheansatzseemstoprovidearealizationofthebranecreationoperators--somethingofmajorimportancebothfortopologicalandphysicalstringtheories4.Obviouslythisisabeginningofabeautifulstory….CONCLUSIONS3.ThealgebraicBe107
TwoDimensionalGaugeTheories
and
QuantumIntegrableSystems
NikitaNekrasovIHESImperialCollegeApril10,2008
TwoDimensionalGaugeTheorie108BasedonNN,S.Shatashvili,toappearPriorwork:E.Witten,1992;A.Gorsky,NN;J.Minahan,A.Polychronakos;M.Douglas;~1993-1994;A.Gerasimov~1993;G.Moore,NN,S.Shatashvili~1997-1998;A.Losev,NN,S.Shatashvili~1997-1998;A.Gerasimov,S.Shatashvili~2006-2007BasedonNN,S.Shatashvili,to109
Wearegoingtorelate
2,3,and4dimensional
susygaugetheories
withfoursupersymmetries
N=1d=4
AndquantumintegrablesystemssolublebyBetheAnsatztechniques.
Wearegoingtorelate
2,3,110
Mathematicallyspeaking,thecohomology,K-theoryandellipticcohomologyofvariousgaugetheorymodulispaces,likemoduliofflatconnectionsandinstantonsAndquantumintegrablesystemssolublebyBetheAnsatztechniques.
Mathematicallyspeaking,the111Forexample,weshallrelatetheXXXHeisenbergmagnetand2dN=2SYMtheorywithsomematterForexample,weshallrelatet112(pre-)HistoryIn1992E.WittenstudiedtwodimensionalYang-Millstheorywiththegoaltounderstandtherelationbetweenthephysicalandtopologicalgravitiesin2d.(pre-)History113(pre-)HistoryTherearetwointerestingkindsofTwodimensionalYang-Millstheories(pre-)HistoryTherearetwo114Yang-Millstheoriesin2d(1)
CohomologicalYM=twistedN=2super-Yang-Millstheory,withgaugegroupG,whoseBPS(orTFT)sectorisrelatedtotheintersectiontheoryonthemodulispaceMGofflatG-connectionsonaRiemannsurfaceYang-Millstheoriesin2d(1)115Yang-Millstheoriesin2dN=2super-Yang-MillstheoryFieldcontent:
Yang-Millstheoriesin2dN=2s116Yang-Millstheoriesin2d(2)PhysicalYM=N=0Yang-Millstheory,withgaugegroupG;ThemodulispaceMGofflatG-connections=minimaoftheaction;Thetheoryisexactlysoluble(A.Migdal)withthehelpofthePolyakovlatticeYMactionYang-Millstheoriesin2d(2)117Yang-Millstheoriesin2dPhysicalYMFieldcontent:Yang-Millstheoriesin2dPhysi118Yang-Millstheoriesin2dWittenfoundawaytomaptheBPSsectoroftheN=2theorytotheN=0theory.Theresultis:Yang-Millstheoriesin2dWitte119Yang-Millstheoriesin2dTwodimensionalYang-MillspartitionfunctionisgivenbytheexplicitsumYang-Millstheoriesin2dTwod120Yang-Millstheoriesin2dInthelimitthepartitionfunctioncomputesthevolumeofMG
Yang-Millstheoriesin2dInth121Yang-Millstheoriesin2dWitten’sapproach:addtwistedsuperpotentialanditsconjugateYang-Millstheoriesin2dWitte122Yang-Millstheoriesin2dTakealimitInthelimitthefieldsareinfinitelymassiveandcanbeintegratedout:oneisleftwiththefieldcontentofthephysicalYMtheory
Yang-Millstheoriesin2dTake123Yang-Millstheoriesin2dBothphysicalandcohomologicalYang-Millstheoriesdefinetopologicalfieldtheories(TFT)Yang-Millstheoriesin2dBoth124Yang-Millstheoriesin2dBothphysicalandcohomologicalYang-Millstheoriesdefinetopologicalfieldtheories(TFT)Vacuumstates+deformations=quantummechanicsYang-Millstheoriesin2dBoth125YMin2dandparticlesonacirclePhysicalYMisexplicitlyequivalenttoaquantummechanicalmodel:freefermionsonacircleCanbecheckedbyapartitionfunctiononatwo-torusGrossDouglasYMin2dandparticlesonaci126YMin2dandparticlesonacirclePhysicalYMisexplicitlyequivalenttoaquantummechanicalmodel:freefermionsonacircleStatesarelabelledbythepartitions,forG=U(N)YMin2dandparticlesonaci127YMin2dandparticlesonacircleForN=2YMthesefreefermionsonacircleLabelthevacuaofthetheorydeformedbytwistedsuperpotentialWYMin2dandparticlesonaci128YMin2dandparticlesonacircleThefermionscanbemadeinteractingbyaddingalocalizedmatter:forexampleatime-likeWilsonloopinsomerepresentationVofthegaugegroup:YMin2dandparticlesonaci129YMin2dandparticlesonacircleOnegetsCalogero-Sutherland(spin)particlesonacircle(1993-94)A.Gorsky,NN;J.Minahan,A.Polychronakos;YMin2dandparticlesonaci130HistoryIn1997G.Moore,NNandS.Shatashvilistudiedintegralsovervarioushyperkahlerquotients,withtheaimtounderstandinstantonintegralsinfourdimensionalgaugetheoriesHistoryIn1997G.Moore,NNand131HistoryIn1997G.Moore,NNandS.Shatashvilistudiedintegralsovervarioushyperkahlerquotients,withtheaimtounderstandinstantonintegralsinfourdimensionalgaugetheoriesThiseventuallyledtothederivationin2002oftheSeiberg-WittensolutionofN=2d=4theoryInspiredbytheworkofH.NakajimaHistoryIn1997G.Moore,NNand132Yang-Mills-HiggstheoryAmongvariousexamples,MNSstudiedHitchin’smodulispaceMHYang-Mills-HiggstheoryAmongv133Yang-Mills-HiggstheoryUnlikethecaseoftwo-dimensionalYang-MillstheorywherethemodulispaceMGiscompact,Hitchin’smodulispaceisnon-compact(itisroughlyT*MGmodulosubtleties)andthevolumeisinfinite.Yang-Mills-HiggstheoryUnlike134Yang-Mills-HiggstheoryInordertocurethisinfnityinareasonablewayMNSusedtheU(1)symmetryofMHThevolumebecomesaDH-typeexpression:WhereHistheHamiltonianYang-Mills-HiggstheoryInorde135Yang-Mills-HiggstheoryUsingthesupersymmetryandlocalizationtheregularizedvolumeof
MHwascomputedwiththeresultYang-Mills-HiggstheoryUsingt136Yang-Mills-HiggstheoryWheretheeigenvaluessolvetheequations:Yang-Mills-HiggstheoryWhere137YMHandNLSTheexpertswouldimmediatelyrecognisetheBetheansatz(BA)equationsforthenon-linearSchroedingertheory(NLS)NLS=largespinlimitoftheSU(2)XXXspinchainYMHandNLSTheexpertswouldi138YMHandNLSMoreovertheNLSHamiltoniansarethe0-observablesofthetheory,likeTheVEVoftheobservable=TheeigenvalueoftheHamiltonianYMHandNLSMoreovertheNLSHa139YMHandNLSSince1997nothingcameoutofthisresult.Itcouldhavebeensimplyacoincidence.…….YMHandNLSSince1997nothing140In2006
A.GerasimovandS.ShatashvilihaverevivedthesubjectHistoryIn2006
A.GerasimovandS.Sha141YMHandinteractingparticlesGSnoticedthatYMHtheoryviewedasTFTisequivalenttothequantumYangsystem:Nparticlesonacirclewithdelta-interaction:YMHandinteractingparticlesG142YMHandinteractingparticlesThus:YMwiththematter--fermionswithpair-wiseinteractionYMHandinteractingparticlesT143HistoryMoreimportantly,GSsuggestedthatTFT/QISequivalenceismuchmoreuniversalHistoryMoreimportantly,144TodayWeshallrederivetheresultofMNSfromamodernperspectiveGeneralizetocovervirtuallyallBAsolublesystemsbothwithfiniteandinfinitespinSuggestnaturalextensionsoftheBAequationsTodayWeshallrederivetheres145HitchinequationsSolutionscanbeviewedasthesusyfieldconfigurationsfortheN=2gaugedlinearsigmamodelForadjoint-valuedlinearfieldsHitchinequationsSolutionscan146HitchinequationsThemodulispaceMHofsolutionsisahyperkahlermanifoldTheintegralsoverMHarecomputedbythecorrelationfunctionsofanN=2d=2susygaugetheoryHitchinequationsThemodulisp147HitchinequationsThekahlerformonMHcomesfromtwistedtreelevelsuperpotentialTheepsilon-termcomesfromatwistedmassofthemattermultipletHitchinequations148GeneralizationTakeanN=2d=2gaugetheorywithmatter,InsomerepresentationR
ofthegaugegroupGGeneralizationTakeanN=2d=2149GeneralizationIntegrateoutthematterfields,computetheeffective(twisted)super-potentialontheCoulombbranchGeneralizationIntegrateoutth150MathematicallyspeakingConsiderthemodulispaceMRofR-HiggspairswithgaugegroupGUptotheactionofthecomplexifiedgaugegroupGCMathematicallyspeakingConside151MathematicallyspeakingStabilityconditions:UptotheactionofthecompactgaugegroupGMathematicallyspeakingStabili152MathematicallyspeakingPushforwardtheunitclassdowntothemodulispaceMGofGC-bundlesEquivariantlywithrespecttotheactionoftheglobalsymmetrygroupKonMR
MathematicallyspeakingPushfor153MathematicallyspeakingThepushforwardcanbeexpressedintermsoftheDonaldson-likeclassesofthemodulispaceMG2-observablesand0-observablesMathematicallyspeakingThepus154MathematicallyspeakingThepushforwardcanbeexpressedintermsoftheDonaldson-likeclassesofthemodulispaceMG2-observablesand0-observablesMathematicallyspeakingThepus155MathematicallyspeakingThemassesaretheequivariantparametersFortheglobalsymmetrygroupK
MathematicallyspeakingThemas156VacuaofthegaugetheoryDuetoquantizationofthe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版龍門(mén)吊租賃及吊裝作業(yè)風(fēng)險(xiǎn)分擔(dān)協(xié)議3篇
- 二零二五年四人共同經(jīng)營(yíng)民宿的合伙協(xié)議書(shū)
- 二零二五年度出租車(chē)車(chē)輛租賃與智能駕駛技術(shù)研發(fā)合同3篇
- 二零二五年度展會(huì)現(xiàn)場(chǎng)搭建及展品運(yùn)輸合同3篇
- 2025年度高空作業(yè)安全防護(hù)施工合同范本4篇
- 二零二五年度城市綠化養(yǎng)護(hù)承包合同范本8篇
- 2025年度電動(dòng)汽車(chē)充電樁安全檢測(cè)與維護(hù)服務(wù)合同3篇
- 2025年新媒體營(yíng)銷活動(dòng)合作協(xié)議范本2篇
- 2025年度泥瓦工勞務(wù)分包合同工期延誤責(zé)任協(xié)議
- 2025版農(nóng)業(yè)機(jī)械銷售訂購(gòu)合同(年度版)3篇
- 2024年合肥市廬陽(yáng)區(qū)中考二模英語(yǔ)試題含答案
- 質(zhì)檢中心制度匯編討論版樣本
- 藥娘激素方案
- 提高靜脈留置使用率品管圈課件
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗(yàn)的標(biāo)準(zhǔn)大氣條件
- 《心態(tài)與思維模式》課件
- C語(yǔ)言程序設(shè)計(jì)(慕課版 第2版)PPT完整全套教學(xué)課件
- 行業(yè)會(huì)計(jì)比較(第三版)PPT完整全套教學(xué)課件
- 高考英語(yǔ)語(yǔ)法填空專項(xiàng)訓(xùn)練(含解析)
- 危險(xiǎn)化學(xué)品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化課件
- 《美的歷程》導(dǎo)讀課件
評(píng)論
0/150
提交評(píng)論