版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//24MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr25Sounds-fingerprints25Sounds-fingerprints26IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube34ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianDiUnderstandingSemanticsUnderstandingSemantics人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件Demographics–MSAdCenterLabDemographics–MSAdCenterLabCommercialIntentionsofGivenWebsiteCommercialIntentionsofGiven人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件Ifyouwanttosellone,whatisthebestprice?N97(NokiaPhone)N97(NokiaPhone)MinorityGameEIFarolBarMinorityGameModelApplicationInRealworldTherearemorethan100IrishmusicloversbutElFarolhasonly60seats.Theshowisenjoyableonlywhenfewerthan60peopleshowup.Everypeopleshoulddecideweeklywhethergotothebartoenjoylivemusicintheriskofstayinginacrowdplaceorstayathome.Therulesaresimple:afinitenumberofplayershavetochoosebetweentwosides;whoeverendsupintheminoritysideisawinner.SimplifiedfrommarketaimingtoanalyzecomplexfinancialmarketMinorityGameEIFarolBarMinorCollectiveBehaviorDecompositionCollectiveBehaviorDecompositSimulationResults(Li,MaandQin,2010)SimulationResults(Li,Maand人工智能詳解課件人工智能詳解課件YingMa,GuanyiLi,YingsaiDongandZengchangQin(2010),Minoritygamedataminingformarketpredictions,forStockMarketPredictions,toappearintheProceedingsofAAMAS2010.GuanyiLi,YingMa,YingsaiDongandZengchangQin(2010),Behaviorlearninginminoritygames,ToappearintheProceedingsofCARE2009.ZengchangQin,MarcusThintandZhihengHuang(2009),Rankinganswersbyhierarchicaltopicmodels,ProceedingsofIEA/AIE2009,LNCS5579,pp.103-112,Springer.ZhihengHuang,MarcusThintandZengchangQin(2008),Questionclassificationusingheadwordsandtheirhypernyms,TheProceedingsofConferenceonEmpiricalMethodsonNaturalLanguageProcessing,pp.927-936,ACL.ReferencesYingMa,GuanyiLi,YingsaiDoNon-academicNon-academicAcademicAIAcademicAIFuzzyLogicandLogicofScienceFuzzyLogicandLogicofScienNLP&ANNNLP&ANNGA,ALIFE&Multi-agentGA,ALIFE&Multi-agentWeb:orGoogle“ZengchangQin”formyLinkedInProfiles.ContactInformationWeb:orGoogThankyouverymuch!Anyquestions?人工智能詳解課件ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//93MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr94Sounds-fingerprints25Sounds-fingerprints95IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube103ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年健康協(xié)議模板
- 2025年會員注冊合同書
- 2025年食品進(jìn)口與代理銷售一體化合同范本3篇
- 期末復(fù)習(xí)綜合模擬卷 統(tǒng)編版語文八年級上冊
- 二零二五年度西餐廚師聘用合同3篇
- 二零二五年度二手房買賣合同交易信息保密協(xié)議3篇
- 二零二五版科研實驗室場地租賃與科研設(shè)備維護(hù)保養(yǎng)協(xié)議3篇
- 2025年度新能源汽車整車買賣交易合同4篇
- 二零二五年度馬戲團(tuán)安全設(shè)施與人員培訓(xùn)合同4篇
- 門衛(wèi)安全責(zé)任書2025年版:智能化社區(qū)安全協(xié)議2篇
- 人教版高中數(shù)學(xué)必修二《第十章 概率》單元同步練習(xí)及答案
- 智慧校園信息化建設(shè)項目組織人員安排方案
- 浙教版七年級上冊數(shù)學(xué)第4章代數(shù)式單元測試卷(含答案)
- 一病一品成果護(hù)理匯報
- AQ-T 1009-2021礦山救護(hù)隊標(biāo)準(zhǔn)化考核規(guī)范
- 鹽酸??颂婺崤R床療效、不良反應(yīng)與藥代動力學(xué)的相關(guān)性分析的開題報告
- 消防設(shè)施安全檢查表
- 組合結(jié)構(gòu)設(shè)計原理 第2版 課件 第6、7章 鋼-混凝土組合梁、鋼-混凝土組合剪力墻
- 建筑公司資質(zhì)常識培訓(xùn)課件
- GB/T 26316-2023市場、民意和社會調(diào)查(包括洞察與數(shù)據(jù)分析)術(shù)語和服務(wù)要求
- 春節(jié)值班安全教育培訓(xùn)
評論
0/150
提交評論