![2022年浙江省義烏市重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第1頁](http://file4.renrendoc.com/view/db8a6061315a01c7236249b4dd99ec43/db8a6061315a01c7236249b4dd99ec431.gif)
![2022年浙江省義烏市重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第2頁](http://file4.renrendoc.com/view/db8a6061315a01c7236249b4dd99ec43/db8a6061315a01c7236249b4dd99ec432.gif)
![2022年浙江省義烏市重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第3頁](http://file4.renrendoc.com/view/db8a6061315a01c7236249b4dd99ec43/db8a6061315a01c7236249b4dd99ec433.gif)
![2022年浙江省義烏市重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第4頁](http://file4.renrendoc.com/view/db8a6061315a01c7236249b4dd99ec43/db8a6061315a01c7236249b4dd99ec434.gif)
![2022年浙江省義烏市重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)押題卷含解析_第5頁](http://file4.renrendoc.com/view/db8a6061315a01c7236249b4dd99ec43/db8a6061315a01c7236249b4dd99ec435.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,菱形ABCD的對角線相交于點(diǎn)O,過點(diǎn)D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點(diǎn)F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.2.若關(guān)于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,33.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點(diǎn)P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.24.用一根長為a(單位:cm)的鐵絲,首尾相接圍成一個正方形,要將它按圖的方式向外等距擴(kuò)1(單位:cm)得到新的正方形,則這根鐵絲需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm5.不等式5+2x<1的解集在數(shù)軸上表示正確的是().A. B. C. D.6.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個不相等的實(shí)數(shù)根 B.有兩個相等的實(shí)數(shù)根C.只有一個實(shí)數(shù)根 D.沒有實(shí)數(shù)根7.如果關(guān)于的不等式組的整數(shù)解僅有、,那么適合這個不等式組的整數(shù)、組成的有序數(shù)對共有()A.個 B.個 C.個 D.個8.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.729.不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.10.某春季田徑運(yùn)動會上,參加男子跳高的15名運(yùn)動員的成績?nèi)缦卤硭荆撼煽內(nèi)藬?shù)這些運(yùn)動員跳高成績的中位數(shù)是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)A作AE⊥BD,垂足為點(diǎn)E,若∠EAC=2∠CAD,則∠BAE=__________度.12.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點(diǎn)D,滿足AD=AB,將線段AC繞點(diǎn)A逆時針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當(dāng)DC’//BC時,旋轉(zhuǎn)角度α的值為_________,13.如圖,在菱形ABCD中,點(diǎn)E、F在對角線BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.14.如圖,將矩形ABCD沿GH對折,點(diǎn)C落在Q處,點(diǎn)D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是_____cm.15.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.16.如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結(jié)論有_____.(填序號)三、解答題(共8題,共72分)17.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當(dāng)為何值時,AB?AC的值最大?18.(8分)如圖,矩形ABCD中,點(diǎn)P是線段AD上一動點(diǎn),O為BD的中點(diǎn),PO的延長線交BC于Q.(1)求證:OP=OQ;(2)若AD=8厘米,AB=6厘米,P從點(diǎn)A出發(fā),以1厘米/秒的速度向D運(yùn)動(不與D重合).設(shè)點(diǎn)P運(yùn)動時間為t秒,請用t表示PD的長;并求t為何值時,四邊形PBQD是菱形.19.(8分)已知△ABC中,D為AB邊上任意一點(diǎn),DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當(dāng)α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當(dāng)α=45°時,求證:=;(3)如圖3所示,當(dāng)α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.20.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).(1)求y與x之間的函數(shù)關(guān)系式;(2)直接寫出當(dāng)x>0時,不等式x+b>的解集;(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點(diǎn)P的坐標(biāo).21.(8分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點(diǎn),DC為半圓O的切線,切點(diǎn)為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點(diǎn)E,F(xiàn),求∠CEF的度數(shù).22.(10分)在矩形中,點(diǎn)在上,,⊥,垂足為.求證.若,且,求.23.(12分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點(diǎn)M為上一動點(diǎn)(不包括A,B兩點(diǎn)),射線AM與射線EC交于點(diǎn)F.(1)如圖②,當(dāng)F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結(jié)果保留根號).24.如圖1,將長為10的線段OA繞點(diǎn)O旋轉(zhuǎn)90°得到OB,點(diǎn)A的運(yùn)動軌跡為,P是半徑OB上一動點(diǎn),Q是上的一動點(diǎn),連接PQ.(1)當(dāng)∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點(diǎn),且QP⊥OB于點(diǎn)P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在OA的延長線上,求陰影部分面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點(diǎn)睛:本題考查了菱形的性質(zhì),先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.2、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關(guān)于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點(diǎn):分式方程的解.3、C【解析】
根據(jù)題意得出旋轉(zhuǎn)后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點(diǎn)坐標(biāo),結(jié)合點(diǎn)的坐標(biāo)即可得出結(jié)論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點(diǎn)P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(1.﹣1),∴設(shè)旋轉(zhuǎn)后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點(diǎn)為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點(diǎn)為(﹣2,1).∴m==1,故選:C.【點(diǎn)睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是求出旋轉(zhuǎn)后的函數(shù)解析式.本題屬于基礎(chǔ)題,難度不大.4、B【解析】【分析】根據(jù)題意得出原正方形的邊長,再得出新正方形的邊長,繼而得出答案.【詳解】∵原正方形的周長為acm,∴原正方形的邊長為cm,∵將它按圖的方式向外等距擴(kuò)1cm,∴新正方形的邊長為(+2)cm,則新正方形的周長為4(+2)=a+8(cm),因此需要增加的長度為a+8﹣a=8cm,故選B.【點(diǎn)睛】本題考查列代數(shù)式,解題的關(guān)鍵是根據(jù)題意表示出新正方形的邊長及規(guī)范書寫代數(shù)式.5、C【解析】
先解不等式得到x<-1,根據(jù)數(shù)軸表示數(shù)的方法得到解集在-1的左邊.【詳解】5+1x<1,移項(xiàng)得1x<-4,系數(shù)化為1得x<-1.故選C.【點(diǎn)睛】本題考查了在數(shù)軸上表示不等式的解集:先求出不等式組的解集,然后根據(jù)數(shù)軸表示數(shù)的方法把對應(yīng)的未知數(shù)的取值范圍通過畫區(qū)間的方法表示出來,等號時用實(shí)心,不等時用空心.6、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個不相等的實(shí)數(shù)根.故選A.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當(dāng)?>0時,一元二次方程有兩個不相等的實(shí)數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實(shí)數(shù)根;當(dāng)?<0時,一元二次方程沒有實(shí)數(shù)根.7、D【解析】
求出不等式組的解集,根據(jù)已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數(shù)解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時,b=9、10、11;當(dāng)a=4時,b=9、10、11;所以適合這個不等式組的整數(shù)a、b組成的有序數(shù)對(a,b)共有6個,故選:D.【點(diǎn)睛】本題考查了解一元一次不等式組,不等式組的整數(shù)解,有序?qū)崝?shù)對的應(yīng)用,解此題的根據(jù)是求出a、b的值.8、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.9、C【解析】
分別求出每一個不等式的解集,根據(jù)口訣:大小小大中間找確定不等式組的解集,在數(shù)軸上表示時由包括該數(shù)用實(shí)心點(diǎn)、不包括該數(shù)用空心點(diǎn)判斷即可.【詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【點(diǎn)睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.10、C【解析】
根據(jù)中位數(shù)的定義解答即可.【詳解】解:在這15個數(shù)中,處于中間位置的第8個數(shù)是1.1,所以中位數(shù)是1.1.
所以這些運(yùn)動員跳高成績的中位數(shù)是1.1.
故選:C.【點(diǎn)睛】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點(diǎn):矩形的性質(zhì);等腰三角形的性質(zhì).12、15或255°【解析】如下圖,設(shè)直線DC′與AB相交于點(diǎn)E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當(dāng)DC′∥BC時,旋轉(zhuǎn)角=15°;同理,當(dāng)DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當(dāng)旋轉(zhuǎn)角=15°或255°時,DC′//BC.故答案為:15°或255°.13、【解析】
利用正方形對角線相等且互相平分,得出EO=AO=BE,進(jìn)而得出答案.【詳解】解:∵四邊形AECF為正方形,
∴EF與AC相等且互相平分,
∴∠AOB=90°,AO=EO=FO,
∵BE=DF=BD,
∴BE=EF=FD,
∴EO=AO=BE,
∴tan∠ABE==.
故答案為:【點(diǎn)睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,正確得出EO=AO=BE是解題關(guān)鍵.14、2【解析】試題分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考點(diǎn):1折疊問題;2勾股定理;1相似三角形.15、3【解析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,16、①②③【解析】
(1)由已知條件易得∠A=∠BDF=60°,結(jié)合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結(jié)論①正確;(2)由已知條件可證點(diǎn)B、C、D、G四點(diǎn)共圓,從而可得∠CDN=∠CBM,如圖,過點(diǎn)C作CM⊥BF于點(diǎn)M,過點(diǎn)C作CN⊥ED于點(diǎn)N,結(jié)合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結(jié)論②是正確的;(3)過點(diǎn)F作FK∥AB交DE于點(diǎn)K,由此可得△DFK∽△DAE,△GFK∽△GBE,結(jié)合AF=2DF和相似三角形的性質(zhì)即可證得結(jié)論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結(jié)論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠CDN=∠CBM,如下圖,過點(diǎn)C作CM⊥BF于點(diǎn)M,過點(diǎn)C作CN⊥ED于點(diǎn)N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結(jié)論②是正確的;(3)如下圖,過點(diǎn)F作FK∥AB交DE于點(diǎn)K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結(jié)論③成立.綜上所述,本題中正確的結(jié)論是:故答案為①②③點(diǎn)睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質(zhì)的題,題目難度較大,熟悉所涉及圖形的性質(zhì)和判定方法,作出如圖所示的輔助線是正確解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點(diǎn)C為圓心,CE長為半徑作⊙C,與BC交于點(diǎn)F,于BC延長線交于點(diǎn)G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點(diǎn)M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點(diǎn)C為圓心,CE長為半徑作⊙C,與BC交于點(diǎn)F,于BC延長線交于點(diǎn)G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點(diǎn)M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點(diǎn)E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點(diǎn)睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識點(diǎn).18、(1)證明見解析(2)74【解析】試題分析:(1)先根據(jù)四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據(jù)O為BD的中點(diǎn)得出△POD≌△QOB,即可證得OP=OQ;(2)根據(jù)已知條件得出∠A的度數(shù),再根據(jù)AD=8cm,AB=6cm,得出BD和OD的長,再根據(jù)四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.試題解析:(1)證明:因?yàn)樗倪呅蜛BCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因?yàn)镺為BD的中點(diǎn),所以O(shè)B=OD,在△POD與△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以O(shè)P=OQ.(2)解:PD=8-t,因?yàn)樗倪呅蜳BQD是菱形,所以PD=BP=8-t,因?yàn)樗倪呅蜛BCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即運(yùn)動時間為74考點(diǎn):矩形的性質(zhì);菱形的性質(zhì);全等三角形的判斷和性質(zhì)勾股定理.19、1【解析】試題分析:(1)證明△CFD≌△DAE即可解決問題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等邊三角形.(2)證明:如圖2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四邊形ADFG是矩形,F(xiàn)C=FG,∴FG=AD,CF=AD,∴=.(3)解:如圖3中,設(shè)AC與DE交于點(diǎn)O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.點(diǎn)睛:本題考查了相似三角形綜合題、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運(yùn)用所學(xué)知識解決問題,屬于中考壓軸題.20、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數(shù)關(guān)系式;(2)依據(jù)A(1,3),可得當(dāng)x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進(jìn)行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進(jìn)而得出點(diǎn)P的坐標(biāo).詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數(shù)關(guān)系式為:y=;(2)∵A(1,3),∴當(dāng)x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點(diǎn)B的坐標(biāo)為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點(diǎn)睛:本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題:求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點(diǎn),方程組無解,則兩者無交點(diǎn).21、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據(jù)切線的性質(zhì)和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據(jù)等角的余角相等即可得出結(jié)論;(2)根據(jù)三角形的外角的性質(zhì)證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.22、(1)證明見解析;(2)1【解析】分析:(1)利用“AAS”證△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,據(jù)此知AD=2DF,根據(jù)DF=AB可得答案.詳解:(1)證明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度在線教育平臺服務(wù)有償合同
- 2025年度廣告牌廣告內(nèi)容更新與維護(hù)服務(wù)合同
- 2025年度劇院場地租賃及音響設(shè)備供應(yīng)合同
- 2025年度建筑工地臨時設(shè)施搭建勞動合同書
- 2025年度農(nóng)業(yè)機(jī)械設(shè)備銷售合同
- 2025年度市政公用工程掛靠合作合同范本
- 2025年度幼兒園食堂廚師承包與管理合同
- 消防工程居間費(fèi)合同
- 2025年度體育賽事組織居間合同書模板
- 2025糧油購銷合同書范本
- 七年級信息技術(shù)上冊 第13課時 文件管理教案 科教版
- 2022年版義務(wù)教育語文課程標(biāo)準(zhǔn)題庫(教師教資培訓(xùn)考試專用十三套)
- 英語新課標(biāo)(英文版)-20220602111643
- 高考模擬作文“文化自信:春節(jié)走向世界”導(dǎo)寫+范文3篇
- 藥品管理法律制度的創(chuàng)新與探索
- 蘇教版三年級下冊數(shù)學(xué)計算能手1000題帶答案
- 邁瑞醫(yī)療 -醫(yī)療器械-從全球器械巨頭發(fā)展看邁瑞海外進(jìn)擊之路
- 改善護(hù)理服務(wù)行動計劃總結(jié)報告
- 智慧農(nóng)業(yè)整體架構(gòu)規(guī)劃設(shè)計方案
- 湖南汽車工程職業(yè)學(xué)院單招職業(yè)技能測試參考試題庫(含答案)
- 第2課+古代希臘羅馬(教學(xué)設(shè)計)-【中職專用】《世界歷史》(高教版2023基礎(chǔ)模塊)
評論
0/150
提交評論