高數(shù)-下學(xué)期復(fù)習(xí)4.1方程分類與解法及結(jié)構(gòu)定理_第1頁
高數(shù)-下學(xué)期復(fù)習(xí)4.1方程分類與解法及結(jié)構(gòu)定理_第2頁
高數(shù)-下學(xué)期復(fù)習(xí)4.1方程分類與解法及結(jié)構(gòu)定理_第3頁
高數(shù)-下學(xué)期復(fù)習(xí)4.1方程分類與解法及結(jié)構(gòu)定理_第4頁
高數(shù)-下學(xué)期復(fù)習(xí)4.1方程分類與解法及結(jié)構(gòu)定理_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第四分方方程的分類與解法及結(jié)構(gòu)定dy

f(x)g(y)dyg(

f(x)dx dy f(x)dx g( dyy

f(y) u,yxu

u

u

f

dyp(x)y

通 ycep(

(cec1

dyp(x)y 通 yep(x)dxcq(x)ep(x)dxdx n 伯努利方 P(x)yQ(x)y(n0,1) P(x) zy1ndz1n)P(x)z1y(n)

f(xny(n)

f(xny

f(x,

y

yp(x)

p

f(x,y

f(y,

yp

y

pp

f(y,F(xyy,y(n

d(xyy,y(n1(x,y,y,,y(n1cF(x,y,y,,y(n01(疊加原理)y1(xy2(x),,yn(x)nnc1y1(xc2y2(xcnyn(x)cjyj(x也是齊次方程的解,其中c1c2,cnj~定理2y(xy1(x),y2(x),yn(x) 則cjyj(xy(x也是非齊次方程的解,其中c1c2,cnj3(二階齊次線性微分方程通解的結(jié)構(gòu))y1(xy2(x)(axbya1(x)ya2(x)y

yc1y1(xc2y2

(c1,c2是任意常數(shù))是方程(3)

ya1(x)ya2(x)yf

1)1y2(x)(axb是方程(4)對應(yīng)的齊次線性方程(3)ycy(x)cy(x)

1 2

y(n)ay(n1)ay0特征方程nan1a ypyqy0的通解的步驟如下:r2prq0第二步求出特征方程的兩個根1,2第三步根據(jù)特征方程兩個根的不同情形,按照下列表格寫出微分方程(3)r2prq0的兩個根, ypyqy0兩個不相等的實根1,2兩個相等的實根1一對共軛復(fù)根1,2yCe1xCe2 y(CCx)e1 yex(CcosxCsin 單實根一對單復(fù)根1,2k重實根k重復(fù)根1,2給出一項給出兩項ex(CcosxCsin k給出kex(CCxCxk1 2kex[(CCxCxk1)cosx (DDxDxk1)sin

ypyqy

f11yyy*yy*11mf(x)exPm

特 y*(x)

k是特征根mf(xex[A(x)cosxB(x)sinx]特解y*xkex[P(x)cosxm

(x)sin k是特征根immax{l

xny(n)axn1y(n1)ayf 令x 或tlnx, dy 1

d2

1d2

dy d3

1d3

d2

dy xd

x2dt

dt

x3

3dt

dt若引入微分算子符號D ,則上述結(jié)果可簡記

Dy,x2

d2y

D)yD(D1)x3y

d3

d23dt

2

2D)yD(D1)(D2)

xky(k)D(D1)(Dk1)一般1y6y9a2y1的通解,a2解:r36r29a2r0,特征根2

0,

3aiY(xce3x(ccosaxcsinax,特解形式y(tǒng)*(x

(x)ex,其中0 k1,

(x)Ay*(x)Ax,代入原方程,Ax

9y(x)Y(x92yP(xyQ(xy1(xy2(x,C為任意(A)C[y1(x)-y2(x)],(B)y1(x)+C[y1(x)-y2(x)](C)C[y1(x)+y2(x)](D)y1(x)+C[y1(x)+y2(x)解:選3y1(xy2(xyp(xyq(xy0y1(xy2(x)(A)y1(x)y2(x)y2(x)y1(x)(C)y1(x)y2(x)y2(x)y1(x)

(B)y1(x)y2(x)y2(x)y1(x)(D)y1(x)y2(x)y2(x)y1(x) 解:由(B)可知y2(x)y1(x)lny(xlny(xlnC,故y2(x)C,可知 y2

y1(x),y2(x4yyexsinx解r210

1,y*(x)xkQ(x)ex y*(x)xkex(A(x)cosxB(x)sinx)bcosxcsin 所以y*(xaxexbcosxcsin5在下列微分方程中,yCexCcos2xCsin2x(CCC為任意常數(shù)) 解的是(A)yy4y4y

yy4y4y(C)yy4y4y0(D)yy4y4y解:選6yyyexy*(x)e2xex求,解法1:由y*(xe2xexxex可知特征根r1,r 故特征方程為(rr)(rr)r23r20,從而32xex 得1y(x)cexce2x 2y*(x)e2xexxex得(42)e2x32)ex1)xex42 故32 所以1 7F(x)

f(x)g(xf(xg(xf(x)g(xg(x)

f(xf(0)0,f(x)g(x)2exF(x)

f'(x)g(x)f(x)g'(x)

f2(x)g2(f(x)g(x))22f(x)g(x)4e2x2FF'(x)2F(x)即F(0)

F(x)e2x8stf(st)f(sf(t2stf'(0)1f(x解:st0(0f(x)

f(xh)f(x)

f(h)2xh2x

f(h)f(0)2xh

f(x)x2xcf(0)0,得c0f(x)x2x9f(x)sinx0(xtf(t)dtf(xfx 解f(xsinxxf(t)dttf(t)dtf(xcosxf f(xsinxf(xf(0)0f(0f(x)

1sinx2

xcos2

d2)

xdya2

y0,a大于零常數(shù),ysintdy

dy

dt

dtdx/

dtd2y

d(

1)

d(

1)

d2

)2)dxdt

dtdtcost

dtcos

d2代入原方程,dt

y0,解锝y(tǒng)(tc1cosatc2sinat,再用tarcsinx11求解微分方程組

2y(工科微積分不用做,工科數(shù)學(xué)分析做31解:特征方程:|AE

23

221, a1a2x y b1b2x a1a2a2x

2a1a2x

2b1a1(2b2a2 ybbbx

3b1b2x

3b12a1(3b22a2)x

,1)TyCexC

2

2 x ly1y2y3yp(xyq(xy

f(xc1,c2為任意常數(shù),c1y1c2y2

2.

xexe2x,

xexex,

xexe2xex32分方程的三個解,求此微分方程 (yy2yex2xex32 3.x0f(t)dt0tf(tx)dtf

(f(x)cosxsinx .設(shè)函數(shù)

f

上可導(dǎo),

f(0)

,且滿足等式f(x)f(x)1xf(t)dt

,(1)

f

(2)

x

,式ex

1f(x1

f(x)

e)x例1曲線過點(1,1)yx截距,解:yy(x)p(xyyy(x上任一點,切線方程YyyXx)yyxy,法線方程Yy1Xxyxxyyyxyxyy,即yyx

yxx解得,通解為arctanx

c,特解arctanx2x2

x2x2

22LP(xy)(x0yL經(jīng)過點1,02 2 LLL以及兩坐標軸所圍圖形的面積解(1)LP(xyYyy(XX=0yy由題設(shè)知

yxy,令ux2x2

dx

,解得1x21x2L經(jīng)過點1,0x1L22 22 x2yx22 y14(2)y1x2P(xy4Y1x22x(X4 4 x2 即Y2xXx210x1,它與x軸及y軸的交點分別為 4,042 42 0x21

4 4 S(x)

x21

144

12

x2

0 xS(x)

1x213x21444x2 44令S(x)0,解得x 6當0x

3時,S(x)0;x 3時,S(x)0,因而x 3是S(x)在0,12 2 Y2

3X3 Y

3X 例3m的物體,由靜止開始下落,已知空氣阻力與下落速度成正比,(1)SkSmm d 解:(1)由牛頓第二定律,Fmamg

mdt

,即S(0)S(0)S(t)

k2

k2

ke

k

t,v(t)S(t)k

kem

ktk d

mgkvmv由mg

mdt

S0解得Smvk

k2

mgkvty(t),依題意,在時段[ttdt2y

2dy100ty|t0

dyy

2dt100ty

(100

y

t

10得c故當他=60y6vv1999A5m, 為了治理污染,2000年初起,Am0v少年,Am0以內(nèi)(61n3年)某種飛機在機場降落時,為了減少滑行距離,在觸地的瞬間,飛機尾部張開傘,以,使飛機迅速并停下?,F(xiàn)在一質(zhì)量為9000kg的飛機,著陸時的水平速度為700km/h,經(jīng)測試,傘打開后,飛機所受的總阻力與飛機的速度成正比(比例系數(shù)k6.0106),問從著陸點算起,飛機滑行的最長距離是多少?(第六元函數(shù)微分多元函數(shù)概f(Pf(x,y)

P0(x0y0D的聚點.Ao正數(shù),總存在正數(shù)P(x,y)∈DU(P0,(x(xx)2(yy00

|f(P)–A|=|f(x,y)–A|<Af(x,y)當(x,y)(x0,y0

(x,y)(x0,y0

f(xyAf(x,y)→A((x,y)(x0,y0

f(P)

或f(P)→A(PP0為了區(qū)別于一元函數(shù)的極限,上述二元函數(shù)的極限也稱做二重極限(x,y)(x0,y0

f(x,y)

(x0,y0)

zf(xy)Df(xy)Df(xy)D上的連續(xù)函數(shù)f(xy)P0(x0,y0P0(x0,y0f(xy)的間斷點元連續(xù)函數(shù)的復(fù)合函數(shù)也是連續(xù)函數(shù)。一切多元初等函數(shù)在其定義區(qū)域內(nèi)是連續(xù)的

p

f(P)f(P0)D上的多元連續(xù)函數(shù)必取復(fù)介于最大值和最小值之間的任何概念z

f(x,y),z

f(xx,y)f(x, 1對x求導(dǎo)視y為常數(shù),幾何意義也說明了這個問題二元函數(shù)z=f(x,y)在點M0(x0,y0)的偏導(dǎo)數(shù)有下述幾何意義.fx(x0y0zf(xyyy0M0M0x軸的斜率.fy(x0y0z

f(xyx=x0M0M0Tyy軸的斜率2(x0,y0

時y0可先代入(因此可能簡化函數(shù))再對x求可微偏導(dǎo)數(shù)存,偏導(dǎo)數(shù)連續(xù)

fff=f連

z=f(xy)Dx

fx(x,y),y

fy(xyz=f(xy)的二階偏導(dǎo)數(shù)。按照對變量求導(dǎo)次序的不同有下列四個二階偏z2z

z

2z

fxx(x,y),yx

fxy(x, z

z 2zxyyx

fyx(x,y),yyy2

fyy(x, zf(x,y),uu(x,y),vv(x,zfuf

zfuf u

v

u

vd(uv)du

d(uv)udv

duvduv F(x,y,z)

zz(xyzFxz

x y

(x,y,)z

xx0

yy0z

法平面方程xt(xx0ytyy0zt(zz0xy y

z

zxx0yy0z 法平面方程xx0yyy0z(zz0

3)

0Fxyz nFxFy0 切平面Fx|p(xx0Fy|pyy0Fz|p(zz0 xx0

yy0z

000 000z

f(x,y)F

f(x,y)zn(fx,fxx0yy0z f 1xx(u,*yy(uv)(參數(shù)方程形式zz(u,

(y,

(z,

(x,y)nv1v2

(u,v),(u,v),(u,v)

uu(x,y, l

xcos

ycos

z

gradul(l方向投影

uuux,y,z

graduux,y,z

ijkdivijk

rotAAzz

f(x,求駐點

駐點2

2z

2z PAx2BxyCy2

AC0A0A03

f(x,y,

Lf(xyz(xyz

(x,y,z)(一)1zf(xyfx(x0y0)0fy(x0y0)0f(xy0(x0,y0)連續(xù);②dz(x,y)0;③f(x,y0)在xx0處連續(xù);④f(x0,y)在yy0連續(xù)” 0 (C)②④ 2f(xy在點(0,0) [f(x,y)f(0,0)](x,f(x,0)f

0,且

f(0,y)f(0,0) y limfx(x,0fx(0,0)0,且limfy(0yfy(0,0

(x,

f(x,y)f(0,0)

yx2x23證明極限y

x3x6x

2證當(xyykx3趨于(0,0)x3 x3 xxy

6

2x0x0

6

26 x01x01xk去不同值而取不同值。故極限x2x2

x3x6x

24z

(x2y2f(x,y)

x2y20, x2y20,(1)討論f(x,y)的連續(xù) (2)求fx(x,y),fy(x,(3)討論fx(x,y),fy(x,y)的連續(xù) (4)求df(x,解:(1)當(xy)0時,顯然連續(xù),x2limf(x,y)lim(x2x2

0

fy

yf(xy在(0,0)(2)當(xy(0,0x2x21fx(xx2x21

x2fx2

f(x,0)f(0,0)limx x

x x2x2x2x2x2x2

,fy(0,0)當(xy)(0,0fx(xyfy(xy顯然連續(xù),當(xy)(0,0x2x2xlimf(x,y)x2x2x

f(xyy

y x2x(0,0)fy(xx2x當(xy)(0,0df(x,y)fx(x,y)dxfy(x,x2x2x2x2=x2x2當(xy)(0,0

x2x2

dxx2x2x2x2x2x2由于limf(xyf(0,0)fx(0,0)xx2x2

sin 0x0y

x2x2

x0yf(xy在點(0,0)fx(0,0)2fy(0,0)1(A)df(0,0)2dx(B)f(xy在(0,0)z(C)

f(x,在(0,0)jx0y

xf(x,y)必存 考慮二元函數(shù)

f(xy)的下面4個性質(zhì)

f(xy)(x0y0連續(xù)②

f(xy)(x0y0)兩個偏導(dǎo)數(shù)連續(xù);f(xy在(x0y0)f(xy在(x0y0)若用“P→QPQ,(A)(B) f(xy)|xy|(xy,其中(x,y在點(0,0)(x,y)在什么條件下,fx(x,y),fy(x,y)存在 ((x,y)0(x,y)在什么條件下,f(x,y)在(0,0)可微 ((x,y)0 1zf(xy,xx2y(xy2z

t)dtf和

x2

解:

y

tu,

(xx2

y

t)dtxy2(u)(du)x2yz

f1yf2

y)(xy2)y2(x2y)2xy2z

f1y(f11xf12x)x2f2fx2(f21xf22x)2y(xy2xy3(xy2)2x(x2y)2x3y(x2

y19x2y20有形如ux 解設(shè)ry,則u(rxu

r

y

2uy2

2y (r)

u r1

2u

1 (r)

x

y22y1 y2

2yx2x既 x2x 亦 (1r2)2r

(r)c1arctanr 故 u(x)c1arctanx

(c1,c2為任意常數(shù)3zf(x2y22z 2z 1 x2y2xxz

yzx2解:設(shè)zf(r),x2 2

rx dz dz

z

z

dz dr2z

dr

d

r r y2dr2z

,解得zc1cosrc2sinrrx2zx2

x2y2x2x2

x2z

f(t,et

,其中 具有一階連續(xù)偏導(dǎo)數(shù),

2z。2 (2xf2x3y(fexyf 2.已知函數(shù)uu(xyx2y2xy0,試確定參數(shù)a,b變換u(x,y)V(x,y)eaxby下不出現(xiàn)一階偏導(dǎo)數(shù)項 (a1,b13.設(shè)函數(shù)z

f(xy在點(1,1

3(x)

f(x,f(xx

d3(x)

x

1yy(x)zz(xzxf(xyF(xyz)0所確定的函數(shù),fFdzdy 解:zxf(xyF(xyz)0x

dz(

xf)Fyxfdx

fx(1 )

Fyxf

(Fxf

F(fxf FF F z

Fyxf2設(shè)函數(shù)u定,求du

f(xyzzz(xyxexyeyzez 解:duxdxydyx求導(dǎo),u

fxfzx,

z

z ex

ex

ey所以xezzezx

fxfzezzezy

fyfzez exxex eyyey所以dufxfzezzezdxfyfzezzez 3xyzlnyexz1,根據(jù)隱函敵存在定理,存在點(0,l,1)的一個鄰zz(xyy(xzzz(xxxyzzz(xxxyzyy(x解:選4zz(xy

0:c,f(xyf22

f

2

f22

2xyxy(x

y2d2證明:f(x, c為一直線,當且僅

0f(xyx求導(dǎo)ffdy0dyfxx y

f dy( xy

dx

f

d2 dy d2 fxx2fxydxfyy(dx)fydx2

d2必要性:若(x, c為一直線,

0,由(1)

2

dyxy

(dy)2yy

2

2

2

(f

20

f

(f

f22

f

2

f22

2xyxy(x

y2

式成立,即d2

2

dyxyd2

(dy)2yy比較(1)式,fy

0fy0

0,即(xy)c5z(xyF(xzyz0xzyzz 1 z)F(z1z)0,兩邊同乘x2y,1 y xyzFx2

xzFy2xzx xF1xzyzz

,由對稱性得yzy xF1

x x(二) .設(shè)函數(shù)z

f(u)u(uyp(t)dtuxy的函數(shù),其中f(u),(up(u),(u連續(xù),且(u)1pyzp(xz 例1求函數(shù)uxyezxtyt22ztt3M(1,1,0

t1MM M 其方向余弦為cos

,cos

cos3

2 xcosycoszcos

1 1 2xtyt2zt3x2y3z0垂直的切線方程,ux2y2z2z 解:設(shè)切點參數(shù)為t0s1,2t0,3t0n1,2,3,即00,所以t0切點(1,1,1s1,2,3x1y1z

123s0 123

cos cos 0 0

3x2y2z23上與(1,1,1點處的切平面平行的切平面方程,ux22y23z2在點(1,1,1x2y2z2300n2(Fx,Fy,Fz)(x,y,z)(2x0,2y0,2z0)//(x0,y0,z00n1n2x0y0z0x0y0z0切平面方程

(x1)(y1)(z1)n0

1,1

,取“+3 33133uucosucosu3133

0 0xayz3xayz3(1,2,5,求a,b

在平面上,而平面zx2y2x22.函數(shù)zx2 (B)偏導(dǎo)數(shù)存 (選2x22y2z212上求一點,f(xyz)x2y2z2

12

1,021f(xy在點(0,0)y

f(xyf(0,0)1(x2y2(A)點(0,0)f(xy極值點(B)點(0,0)f(xy(C)點(0,0)是f(x,y)極小值點(D)由條件不能確定(0,0)是否為極值 21f(0,0xy時,選例3f(xy預(yù)(x,y均為可微函數(shù),且(xy)0,已知(x0y0f(xy在約束條件(x,y)0下的一個極值點,下列選項正確的是(A)fx(x0y0)0fy(x0y0)(C)fx(x0y0)0fy(x0y0)

(B)fx(x0y0)0fy(x0y0)(D)fx(x0y0)0fy(x0y0)例4zf(0,00

f(xy的全增量z2x3)x2y4)y

(1)z的極值;(2)zx2y225(3)zx2y225z2x3z2y4zx23xyzy2y 所以yy24yc

zx23xy24y

,由f(0,0

,得c0zx23xy24z2x3 x

2z

2z

2z (1)由 A

2,B

0,C zy2y4

y1

ACB240A20z3,26.252(2)L(x,y,)x2y23x4y(x2y2Lx2x32xL2y42y

x3得

,z(3,4)

,及x33z(3,4

yx2y225 5F(xyz處處有連續(xù)的偏導(dǎo)數(shù),并且三個偏導(dǎo)數(shù)在任何一點不同時等于零,又設(shè)曲面S:F(x,y,z)0不含原點M(x0,y0,z0)是曲面上距原點最近的點。求證該M(x0,y0,z0)的法線經(jīng)過原點。證明只須證明曲面在點M(x0,y0,z0)處的法向量平行于OM(x0,y0,z0) 條極值問題minf(x,y,z)x2y2F(x,y,z)f(xyzS上任一點(xyz

L(x,y,z)f(x,y,z)F(x,y,

f(xyz)在點M(x0y0z0x0y0z0(x0,y0(x0,y0,z(x0,y0,z0

2

(x0,y0,z0(x0,y0,z0(x0,y0,z0(x,y,z

FF于是向量

0與x,y,z

(x,y,z00

S:F(x,y,z)

在點M(x0y0z0

FFFx,y,z

SM(x0y0z0M(x0y0z0 (x,y,z00與向量OMx0y0z01.設(shè)zz(x,y)是由x26xy10y22yzz2180確定的函數(shù),求z(x,y)的極值 (極小值z(9,3)3,極大值z(9,3)3)2.zf(xydz2xdx2ydyf(1,12f(xy D(xy|

(f(0,2f(0,22f(1,0f(1,03xoyDxy|x2y2xy75},小山的高度函數(shù)為h(xy75x2y2M(x0,y0為區(qū)域D上一點,問h(x,y)在該點沿平面的什么方向的方向?qū)?shù)g(x0,y0g(x0,y0Dx2y2xy75上找出使(1)g(xy達到(y2x)2(x2y 00 (y2x)i(y2x)2(x2y 00 (x0,y0 x2y22z24.已知曲線Cxy3z

,求Cxoy第七元數(shù)量值函數(shù)積分多元數(shù)量值函數(shù)積分的概念與性nnf(M)d=I=d

f(Mi)ii1f(M)在幾何形體f(M)在f(M)在有界閉幾何形體f(M)在上必可積。11dd.2[f(M)g(M)]d

f(M)d

g(M)d 3f(M)df(M)df(M)d

f(M)g(MMmf(M)在閉幾何形體f(M)在閉幾何形體上連續(xù),則在M0 f(M)df 二重積 f(x,y)d=limf(, 0iD三重積分f(xyz)dv

f(i,i,i)

0i i i 對弧長的曲線積 f(x,y)ds= f(,0 i i i f(x,y,z)ds f(,,0nf(x,y,z)dS=limf(i,i,i)Sin

二重積計算方法畫線定限”累次積分積之。 1方法“畫線”定限(切點D)12y后xI1

xsin3

ex2,cosx2,sinx2sinxx

2

y例1計算0xdxx 2y

2y y

12

y

dy0

dy0xdx30y 12y2dey21y2ey22

y 26 6

14e4ey221(15e46

0

21dxxsin2ydy2dxxsin2ydy。解交換積分次序 y 2 2 I1

sin2ydx

2)dy

y

dy (2 1xb例3計算

(a,b0

xyxyy

b0=dxxydydyxydx0

dy

ay

a4

xxxD

dxdyDx2y21xy1解Dx r(cossin

2dxdy2d

Dx

42(cossin1)d 例5 (|x|D:|x||解:原式4|x|dxdy41dx1xxdyD D16(xy)dxdyD是圓心(a,bRD(xy)dxdy((xaybab))dxdya 7xydxdyD是雙紐線(x2y222xyD解:雙紐線(x2y222xy的極坐標方程為r2sin原式22d

sin

rcosrsinrdr 例8 D:x2y2

1 1 解 xdxdyD:x2y2

ydxdyD:x2y2

(x2D:x2y22

)dxdy2

d0rdr9f(x在0x1f(x)01

1xf21 1

1f21010f10

(x)dx0xf(x)dx0

(x)dx0f1 =0

(x)dx0yf(y)dy0

(x)dx0f(y)dxD

(x)f(y)(y=f2(y)f(x)(xy)dxdy1f(x)f(y)(yx)(f(x)f(y))d 210|x2y21|dxdyDx2y29D解Dx2y21D:1x2y2 原式(1x2y2dxdy(x2y21)dxdy 11求emax{x2y200y0x1y解:emax{x2y2}dex2dey2d0x1y

ex

ey

dxe100y

12[xy]dxdyDxy|0x2,0yD解:xyjj1,2,3,4DDk(k1,2,3,4,則[xy]k1k1,2,3,4,因而[xy]dxdy0dxdydxdy2dxdy3dxdy32331

f(x連續(xù),f(0)1F(t)

f(x2y2x2y2t

t0)F000解F(t2dtf(r2rdr2tf(r2rdrF(t2f(t2000F(0)limF(t)F(0)lim2f(t2)2f(0)

t

t2yydxdyDx2,y0,y22yD所圍成的平面區(qū)域 (4 2計箅二重積分|yx2|dxdy,其中D{(x,y)||x|1,0y (11 設(shè)D={(x,y)|x2y2 2,x0,y0},[1x2y2]表示不超過1x2y2的最大數(shù),計箅二重積分xy[1x2y2]dxdy (3 f(x在[a,bf(x)0,證明bf(x)dxb1dxb aff(x在(0,f(t)e4t2

x2y24t

f

dxdyx2x2f(t

f(t)e4t2(4t2三重積概念與形 投影

f(x,y,z)dvbdxy2(x)dyz2(x,y) y1( z1(x,y

f(x,y,z)dvc2dzf(x,y,z z柱面坐 f(x,y,z)dxdydz=f(cos,sin,z)dd f(xyz)dxdydzf(rsincosrsinsinrcos)r2sin 一般方法f(xyz)dxdydzF(uvw|J|

V其 F(u,v,w)

Vf(x(uvwy(uvwz(uvw

y21(x2y2z)dV:由曲線

z圍成

x解:x2y22z4 4I (x2y2z)dxdydzd

2z(r2z)rdr2560Dz:x2y22

448 dx2y2(x2y2z)dzd rdrr2(r448

z)dz

2563 Dxy:x2y2 R2x2例2計算三重積分(3x25y27z2)dV,R2x21解設(shè)x2y2z2R2,則由3x25y27z2z1(3x25y27z2)dV1(3x25y27z21 21由輪換對稱性x2dVy2dVz2dV1(3x25y27z2dV 故原式1(3x25y27z2dV1x2dV5y2dV7z2dV22

1

233(xyz)dV 51(x2y2z2)dV71(x2y2z2)dV

5(x2y2z22152dsindRr2r2dr2 0P0距離平方成正比(k>0),求球體質(zhì)心位置。0解:設(shè)球體為Ω,球心為原點,P(0,0Rx2y2z2R2(xyz

xy zk(x2y2(zR)2 2Rz k(x2y2(zR)2

(x2y2z2RzR22R(x22z2

8

R2dsindRr2r2drR2

4求f(xyz)dV,其中x2y2z2(xyz)2f(x,y,z)

當zx23x2x23x23解:原式(x2y2z22xy2yz2xz)dV

0

3

3

r3cos 例5設(shè)函數(shù)f(x)連續(xù)且于零f(x2y2z2F(t):x2y2z2t

f(x2y2t,G(t)D:x2y2ttf(x2y2D:x2y2tF(t在區(qū)間(0,證明當t0F(t)2G(t

f(x2 2dsindtf(r2 2f(r 000(1) 0002dtf(r2 tf(r2tf(tF(t)

)0f

)r(t0F(t在(0,t2 t20f

)rdr (2)t0F(t2G(t20f

)rdr20f

tf(r20

tf(r2)dr只需證(t)

f

2)r

f(r

f(r

)rdr

0tt tt1又(0)0,所以(t)01

(t)

f(t2)0

f(r2)(tr)2dr1 1

:x2y2z2R2

z0

2

:x2y2z2R2x0y0z0(A)xdV4

ydV4 (C)zdV4 (D)xyzdV4

2.計算f(xyz)dVx2y2za)2a2x2f(x,y,x2

x2y2

,當zx2,當0x2

a4x2x22

16第一型曲線積f幾何解釋:1.

12.Lf(xy)dsf(xy0xOyL為zf(x,y)的柱面面積。xy

ds

x2y2

yy(x)ds1y2ds1y2xr()(dx)2(dy)2rr()(dx)2(dy)2

r2r2x yzy

ds

x2y2z2 z(x

ds

1y2z2dx(此類空間曲線常以隱式方程形式出現(xiàn)特殊的:平行x軸線段dsdx,平行y軸線 ds

x2y2z21I(zy2dsc為 xyz解曲線cx2y2z2R2xyz0xyzzdsydsxds1(xyz)ds10ds 3 3y2dsx2dsz2ds1(x2y2z2)ds1R2ds1R22R2 3

3 I(zy2)ds2R3 1x2y2z2R2x0y0z0的邊界曲線的質(zhì)心,l

(3

4R

4R第一型曲面積

1zz(xy dS

1z2z2 f(x,y,z)dS f(x,y,z(x,y)1z2z2 yy(zx),則 dS

1y2y2 f(x,y,z)dS f(x,y(z,x),z1y2y2 Dyzxxyz dS

1x2x2 f(x,y,z)dS f(x(y,z),y,z1x2x2 (一)1(x2y2z2xy2x2yz)dS,其中x2y2

(0z1zx222解:由對稱性,得xy2dS1zx222 原式 (2(x2y2) x2y2)2dxdy Dxy:xy(332設(shè)曲面|x||y||z|1(x|y|)(333S為球面(xa)2yb)2zc)21(xyS解(xyz)dSxaybzc)]dS(ab 由于球面(xa)2yb)2zc)21xaybzc(xa)dS(yb)dS(zc)dS (xyz)dS=(abc)dS4(ab 例4((2x3x2cos2y3y2cos3(z21cos)dsz1x2y2(z0),coscosco為曲面上任意一點法向量的三個方向余弦(cos0)解:設(shè)

z:x2y2

原式

(6x22x6y22y6z)dV2

2

1r =6(x

z)dV3

(rz)dz323(二)1S:x2y2z2a2z0SS1

xdS4 (B)xdS4 (C)zdS4 (D)xyzdS4

x2計算曲面的質(zhì)量其中為錐面z 在柱體x2y22x2任意一點(x,y,z)處的面密度函數(shù)為該點到xoy面的距離 ( 29 (4(abc)R2

I(xyS

S:(xa)2(ya)2(za)2R的球面x2y2z2a2a0R球面在定球 的面積最大 (R4a38線積分與曲面向量值函數(shù)在有向曲線上的積分第二型曲線積

w|F||l|cosF變力沿曲線運動

dw|F|dsPdxQdy,則WLPdxQdy平面曲線LPdxQdyLPdxQdyRdz,性質(zhì)LP(x,y)dx+Q(x,y)dy=t1{P[x(t),y(t)]x(t)Q[x(t), P

ydxdyLPdxQdyL的取正向的邊界曲線,D為單連通區(qū)域,P,QDLP(x,y),Q(x,y)及DLPdxQdy=0DCLPdxQdy(3)存在u(x,y(3)存在u(x,ydu=P(x,y)dxQ(x,y)dyPdxQdyduu(4)

D內(nèi)恒成立(2)例1

OmA是位于連接O(0,0A(的線段OA下方的任一光滑曲線。且OmA與OA所圍圖2.ABBOB(0,I

(QP Om0(()cosx)dx0(1)dy22 xdy

例2L

x2

L為上半橢圓a2

1(abA(a,0)B(0,b)C(a,0)

y2(x2y2

Q,積分與路徑無關(guān),取l

(上半圓xacos即yasin原式

xdyydx

xdyydx

0(a2cos2ta2sin2t)dtallx2 2 a2all3設(shè)(xy),v(xyD:x2y22x2yD曲線C上u(xy)x,v(xyyuu)vvv xy)vxy)u]dxdyuvdxuvdyxydx (yx)dxdy[(y1)(x1)2]dxdy2dxdy 4D為曲線Cr1cosA,C C函數(shù)uu(xyDx2y21,證明ndsACu是uDuds(ucosucos)ds(ucosucos)dsudyuC

C

C

C (x2y2)dxdydxdyA20d

rdr 2 2x4例5設(shè)f(u)存在連續(xù)的導(dǎo)數(shù),且0f(u)duA0,L為半圓周2x4B(2,0。計算

f(x2y2)(xdxX(xy

f(x2y2)x,Y(x,y)

f(x2y2y,f(x2y2)(xdxydy)

XdxX(xy),Y(xyY2xyf(x2y2) f(x2y2)(xdxydy)=

f(x2y2)(xdx2f(x2)xdx14f(u)du0

2

(xay)dx(x

為某函數(shù)的全微分,a。a計算L

xdyydxLABCA(1,0x2y21B(1,04x2到Dxy|0x,0y}LDxesinydyyesinxdxxesinydyyesin xesinydyyesinxdx2L計算曲線積分I

xdybxbxaL

(ab0ab)L是以點(1,1)為中心,R(R

2為半徑的圓周,取逆時針方向。R

2I0R2

2時, 2

xdyydxA(常數(shù),其中(x)L是繞原點(0,0) y

xdyCC為任一不過原點也不包圍原點的正向閉曲線,證明(xy2C當(1)4時,求(x)及A ((x)4x2,A向量值函數(shù)在有向曲面上的積 流量Q|v|Scos(nv)vsdQvdsPdydzQdzdxv(P(x,y,z),Q(x,y,z),R(x,y,vdSPdydzQdzdxS SS S R

x

zdvPdydzQdzdxRdxdy R或x

zdv(PcosQcosRcos 這里是的整個邊界曲面的外測coscoscos是在點(x,yz)向余弦

xdydzydzdx

1I

3(x2y2z2

a2

1

xy

0xyzI

2 xdydz

zdxdy222

dv 例2

x2y2

,其中是由曲面x

R及兩平zRzR(R0)所圍表面的外側(cè)解:設(shè)123依次為xy

xyxy

xyxy

(R)2dxdyx2y21

x2y22 R2

x2y2R

x2y2R2

x2y2R

x2y2 x2y2

R2

dydz

R2

R2 R2

R2

dydz2

R2y2R

z223If(xyzx)dydz2f(xyzy)dzdxf(xyzz)dxdyfxyz1被坐標面所截部分,上冊。F(x,yz)xyz1I((f(x,y,z)x)Fx(2f(x,y,z)y)Fy(f(x,y,z) ((f(x,y,z)x)1(2f(x,y,z)y)1(f(x,y,z) (xyz)dxdydxdy 第九窮級級數(shù)的知識級數(shù)的概念與性1u1+u2+u3++un+=un sn=ui稱為部分和,若limsns稱無窮級數(shù)un

uns,則kunks unvns,,則級數(shù)(unvns

如果級數(shù)un(u1un)(un1un)(un1

)

k un收斂,則limun

數(shù)項級 小收,小發(fā)大比較法 正項級數(shù)比值法

n

nn根植法 nn

xfdx

( 交錯級數(shù):萊布尼茲判別法,un1un,limun任意項級數(shù)

函數(shù)項級收斂半徑R

數(shù)項級(一)

1(1)若an收斂,則

(2)

1,則an(3)n

n

n 若a收斂,則a2(4)若a2收斂,則a3nn

n

n

n 例2證明若偶函數(shù)f1

f(x)x0的某鄰域內(nèi)有二階導(dǎo)數(shù),且

f(0)1,則n n1 f(xf(0

f(x)f(0)f(0)x

f(0)x2o(x2)f11f(0)

o1,

f11

f(0)

o1

f(0)n

n2 n

n2

|u|f11

f(0) f1即 n n2,故n 絕對收斂 n1 3設(shè){un},{cn cu un,滿足nu

n

n

n

n1

nn,滿足cnncn1a(常數(shù)a0,且 收斂,則un也收un

n1

n(1)

c cucu,從而un11,由

n

n n 1

n1unnn(2)由條件 unn

a0,得

c

cu,所以uc1u1un

n

n

n n

1 nc1收斂,則uc n1

n n 4設(shè)正項數(shù)列{an}單調(diào)減少且(1)an發(fā)散,證明(1)1n1n

n

an{a}單調(diào)減少且(1)nalim

a0n

a n

n 所以

1an1anan11(a

,而(a

部分aaa naaa

n

nSna1an1a1an,所以原級數(shù)絕對收斂n例5xnnx10,其中nxnaa1時。級數(shù)xnfn(1)n

nn(x)xnnx1,x(0,f(x)nxn1n0n

fn(0)10nxnnx10n

(0,1

0x

n1x1f n1x1 n 6設(shè)a和ban1bn1b收斂時,nn

n

n

n 也收斂;當anbnn

nan1bn1 a2b2,a3b3,,

b1

a1

an

a

ban

1 有比較法知,當bnan也收斂;當anbnn

n

n

n

7設(shè)正項數(shù)列{a}單調(diào)減少,且(1)na發(fā)散,試問

n

n1an解由于an0{an}limanan

a0n若a0,則由萊布尼茲判別法有(1)na收斂,與假 ,故a0。于nn 1 1 1,從而 a a a

a

,而a

1

(二) a0p0limnpen1a1,若級數(shù)a (p2

n

n設(shè)annn

n

ununn

n

(u2n

u2n

n

un1

0設(shè)an4tann0(1)求n

1(a

an

1(2)證明:對任意的常數(shù)0,級數(shù)n

1 1

設(shè)a12an12an

1y

nyx

y(0)

n1

n

y111

,試討論級數(shù)

n

n散性

n1 n討論級數(shù)p的斂散性nn若0p1p1時級數(shù)絕對收斂)ab,若其滿足

nn

n

an

性之間的關(guān) (當an發(fā)散時,bn必發(fā)散;當bn收斂時,an必收斂n

n

n

ny2exsin

(x0)x

e1關(guān)于冪級冪級數(shù)的收斂半徑于收斂若n

R22(RR內(nèi)ax(且內(nèi)閉一致收斂nn函數(shù)展開成冪級f(n)(0) f(n)(x f(x)~ x或 0(xx0n n 1)1

1xx2x3(1)nxn

1x12)1

1xx2x3xn1xe

1x22

xnn

(x3sinxx3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論