版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第四分方方程的分類與解法及結(jié)構(gòu)定dy
f(x)g(y)dyg(
f(x)dx dy f(x)dx g( dyy
f(y) u,yxu
u
u
f
dyp(x)y
通 ycep(
(cec1
dyp(x)y 通 yep(x)dxcq(x)ep(x)dxdx n 伯努利方 P(x)yQ(x)y(n0,1) P(x) zy1ndz1n)P(x)z1y(n)
f(xny(n)
f(xny
f(x,
y
yp(x)
p
f(x,y
f(y,
yp
y
pp
f(y,F(xyy,y(n
d(xyy,y(n1(x,y,y,,y(n1cF(x,y,y,,y(n01(疊加原理)y1(xy2(x),,yn(x)nnc1y1(xc2y2(xcnyn(x)cjyj(x也是齊次方程的解,其中c1c2,cnj~定理2y(xy1(x),y2(x),yn(x) 則cjyj(xy(x也是非齊次方程的解,其中c1c2,cnj3(二階齊次線性微分方程通解的結(jié)構(gòu))y1(xy2(x)(axbya1(x)ya2(x)y
yc1y1(xc2y2
(c1,c2是任意常數(shù))是方程(3)
ya1(x)ya2(x)yf
1)1y2(x)(axb是方程(4)對應(yīng)的齊次線性方程(3)ycy(x)cy(x)
1 2
y(n)ay(n1)ay0特征方程nan1a ypyqy0的通解的步驟如下:r2prq0第二步求出特征方程的兩個根1,2第三步根據(jù)特征方程兩個根的不同情形,按照下列表格寫出微分方程(3)r2prq0的兩個根, ypyqy0兩個不相等的實根1,2兩個相等的實根1一對共軛復(fù)根1,2yCe1xCe2 y(CCx)e1 yex(CcosxCsin 單實根一對單復(fù)根1,2k重實根k重復(fù)根1,2給出一項給出兩項ex(CcosxCsin k給出kex(CCxCxk1 2kex[(CCxCxk1)cosx (DDxDxk1)sin
ypyqy
f11yyy*yy*11mf(x)exPm
特 y*(x)
k是特征根mf(xex[A(x)cosxB(x)sinx]特解y*xkex[P(x)cosxm
(x)sin k是特征根immax{l
xny(n)axn1y(n1)ayf 令x 或tlnx, dy 1
d2
1d2
dy d3
1d3
d2
dy xd
x2dt
dt
x3
3dt
dt若引入微分算子符號D ,則上述結(jié)果可簡記
Dy,x2
d2y
D)yD(D1)x3y
d3
d23dt
2
2D)yD(D1)(D2)
xky(k)D(D1)(Dk1)一般1y6y9a2y1的通解,a2解:r36r29a2r0,特征根2
0,
3aiY(xce3x(ccosaxcsinax,特解形式y(tǒng)*(x
(x)ex,其中0 k1,
(x)Ay*(x)Ax,代入原方程,Ax
9y(x)Y(x92yP(xyQ(xy1(xy2(x,C為任意(A)C[y1(x)-y2(x)],(B)y1(x)+C[y1(x)-y2(x)](C)C[y1(x)+y2(x)](D)y1(x)+C[y1(x)+y2(x)解:選3y1(xy2(xyp(xyq(xy0y1(xy2(x)(A)y1(x)y2(x)y2(x)y1(x)(C)y1(x)y2(x)y2(x)y1(x)
(B)y1(x)y2(x)y2(x)y1(x)(D)y1(x)y2(x)y2(x)y1(x) 解:由(B)可知y2(x)y1(x)lny(xlny(xlnC,故y2(x)C,可知 y2
y1(x),y2(x4yyexsinx解r210
1,y*(x)xkQ(x)ex y*(x)xkex(A(x)cosxB(x)sinx)bcosxcsin 所以y*(xaxexbcosxcsin5在下列微分方程中,yCexCcos2xCsin2x(CCC為任意常數(shù)) 解的是(A)yy4y4y
yy4y4y(C)yy4y4y0(D)yy4y4y解:選6yyyexy*(x)e2xex求,解法1:由y*(xe2xexxex可知特征根r1,r 故特征方程為(rr)(rr)r23r20,從而32xex 得1y(x)cexce2x 2y*(x)e2xexxex得(42)e2x32)ex1)xex42 故32 所以1 7F(x)
f(x)g(xf(xg(xf(x)g(xg(x)
f(xf(0)0,f(x)g(x)2exF(x)
f'(x)g(x)f(x)g'(x)
f2(x)g2(f(x)g(x))22f(x)g(x)4e2x2FF'(x)2F(x)即F(0)
F(x)e2x8stf(st)f(sf(t2stf'(0)1f(x解:st0(0f(x)
f(xh)f(x)
f(h)2xh2x
f(h)f(0)2xh
f(x)x2xcf(0)0,得c0f(x)x2x9f(x)sinx0(xtf(t)dtf(xfx 解f(xsinxxf(t)dttf(t)dtf(xcosxf f(xsinxf(xf(0)0f(0f(x)
1sinx2
xcos2
d2)
xdya2
y0,a大于零常數(shù),ysintdy
dy
dt
dtdx/
dtd2y
d(
1)
d(
1)
d2
)2)dxdt
dtdtcost
dtcos
d2代入原方程,dt
y0,解锝y(tǒng)(tc1cosatc2sinat,再用tarcsinx11求解微分方程組
2y(工科微積分不用做,工科數(shù)學(xué)分析做31解:特征方程:|AE
23
221, a1a2x y b1b2x a1a2a2x
2a1a2x
2b1a1(2b2a2 ybbbx
3b1b2x
3b12a1(3b22a2)x
,1)TyCexC
2
2 x ly1y2y3yp(xyq(xy
f(xc1,c2為任意常數(shù),c1y1c2y2
2.
xexe2x,
xexex,
xexe2xex32分方程的三個解,求此微分方程 (yy2yex2xex32 3.x0f(t)dt0tf(tx)dtf
(f(x)cosxsinx .設(shè)函數(shù)
f
在
上可導(dǎo),
f(0)
,且滿足等式f(x)f(x)1xf(t)dt
,(1)
f
(2)
x
,式ex
1f(x1
f(x)
e)x例1曲線過點(1,1)yx截距,解:yy(x)p(xyyy(x上任一點,切線方程YyyXx)yyxy,法線方程Yy1Xxyxxyyyxyxyy,即yyx
yxx解得,通解為arctanx
c,特解arctanx2x2
x2x2
22LP(xy)(x0yL經(jīng)過點1,02 2 LLL以及兩坐標軸所圍圖形的面積解(1)LP(xyYyy(XX=0yy由題設(shè)知
yxy,令ux2x2
dx
,解得1x21x2L經(jīng)過點1,0x1L22 22 x2yx22 y14(2)y1x2P(xy4Y1x22x(X4 4 x2 即Y2xXx210x1,它與x軸及y軸的交點分別為 4,042 42 0x21
4 4 S(x)
x21
144
12
x2
0 xS(x)
1x213x21444x2 44令S(x)0,解得x 6當0x
3時,S(x)0;x 3時,S(x)0,因而x 3是S(x)在0,12 2 Y2
3X3 Y
3X 例3m的物體,由靜止開始下落,已知空氣阻力與下落速度成正比,(1)SkSmm d 解:(1)由牛頓第二定律,Fmamg
mdt
,即S(0)S(0)S(t)
k2
k2
ke
k
t,v(t)S(t)k
kem
ktk d
mgkvmv由mg
mdt
得
S0解得Smvk
k2
mgkvty(t),依題意,在時段[ttdt2y
2dy100ty|t0
dyy
2dt100ty
(100
y
t
10得c故當他=60y6vv1999A5m, 為了治理污染,2000年初起,Am0v少年,Am0以內(nèi)(61n3年)某種飛機在機場降落時,為了減少滑行距離,在觸地的瞬間,飛機尾部張開傘,以,使飛機迅速并停下?,F(xiàn)在一質(zhì)量為9000kg的飛機,著陸時的水平速度為700km/h,經(jīng)測試,傘打開后,飛機所受的總阻力與飛機的速度成正比(比例系數(shù)k6.0106),問從著陸點算起,飛機滑行的最長距離是多少?(第六元函數(shù)微分多元函數(shù)概f(Pf(x,y)
P0(x0y0D的聚點.Ao正數(shù),總存在正數(shù)P(x,y)∈DU(P0,(x(xx)2(yy00
|f(P)–A|=|f(x,y)–A|<Af(x,y)當(x,y)(x0,y0
(x,y)(x0,y0
f(xyAf(x,y)→A((x,y)(x0,y0
f(P)
或f(P)→A(PP0為了區(qū)別于一元函數(shù)的極限,上述二元函數(shù)的極限也稱做二重極限(x,y)(x0,y0
f(x,y)
(x0,y0)
zf(xy)Df(xy)Df(xy)D上的連續(xù)函數(shù)f(xy)P0(x0,y0P0(x0,y0f(xy)的間斷點元連續(xù)函數(shù)的復(fù)合函數(shù)也是連續(xù)函數(shù)。一切多元初等函數(shù)在其定義區(qū)域內(nèi)是連續(xù)的
p
f(P)f(P0)D上的多元連續(xù)函數(shù)必取復(fù)介于最大值和最小值之間的任何概念z
f(x,y),z
f(xx,y)f(x, 1對x求導(dǎo)視y為常數(shù),幾何意義也說明了這個問題二元函數(shù)z=f(x,y)在點M0(x0,y0)的偏導(dǎo)數(shù)有下述幾何意義.fx(x0y0zf(xyyy0M0M0x軸的斜率.fy(x0y0z
f(xyx=x0M0M0Tyy軸的斜率2(x0,y0
時y0可先代入(因此可能簡化函數(shù))再對x求可微偏導(dǎo)數(shù)存,偏導(dǎo)數(shù)連續(xù)
fff=f連
z=f(xy)Dx
fx(x,y),y
fy(xyz=f(xy)的二階偏導(dǎo)數(shù)。按照對變量求導(dǎo)次序的不同有下列四個二階偏z2z
z
2z
fxx(x,y),yx
fxy(x, z
z 2zxyyx
fyx(x,y),yyy2
fyy(x, zf(x,y),uu(x,y),vv(x,zfuf
zfuf u
v
u
vd(uv)du
d(uv)udv
duvduv F(x,y,z)
zz(xyzFxz
x y
(x,y,)z
xx0
yy0z
法平面方程xt(xx0ytyy0zt(zz0xy y
z
zxx0yy0z 法平面方程xx0yyy0z(zz0
3)
0Fxyz nFxFy0 切平面Fx|p(xx0Fy|pyy0Fz|p(zz0 xx0
yy0z
000 000z
f(x,y)F
f(x,y)zn(fx,fxx0yy0z f 1xx(u,*yy(uv)(參數(shù)方程形式zz(u,
(y,
(z,
(x,y)nv1v2
(u,v),(u,v),(u,v)
uu(x,y, l
xcos
ycos
z
gradul(l方向投影
uuux,y,z
graduux,y,z
ijkdivijk
rotAAzz
f(x,求駐點
駐點2
2z
2z PAx2BxyCy2
AC0A0A03
f(x,y,
Lf(xyz(xyz
(x,y,z)(一)1zf(xyfx(x0y0)0fy(x0y0)0f(xy0(x0,y0)連續(xù);②dz(x,y)0;③f(x,y0)在xx0處連續(xù);④f(x0,y)在yy0連續(xù)” 0 (C)②④ 2f(xy在點(0,0) [f(x,y)f(0,0)](x,f(x,0)f
0,且
f(0,y)f(0,0) y limfx(x,0fx(0,0)0,且limfy(0yfy(0,0
(x,
f(x,y)f(0,0)
yx2x23證明極限y
x3x6x
2證當(xyykx3趨于(0,0)x3 x3 xxy
6
2x0x0
6
26 x01x01xk去不同值而取不同值。故極限x2x2
x3x6x
24z
(x2y2f(x,y)
x2y20, x2y20,(1)討論f(x,y)的連續(xù) (2)求fx(x,y),fy(x,(3)討論fx(x,y),fy(x,y)的連續(xù) (4)求df(x,解:(1)當(xy)0時,顯然連續(xù),x2limf(x,y)lim(x2x2
0
fy
yf(xy在(0,0)(2)當(xy(0,0x2x21fx(xx2x21
x2fx2
f(x,0)f(0,0)limx x
x x2x2x2x2x2x2
,fy(0,0)當(xy)(0,0fx(xyfy(xy顯然連續(xù),當(xy)(0,0x2x2xlimf(x,y)x2x2x
f(xyy
y x2x(0,0)fy(xx2x當(xy)(0,0df(x,y)fx(x,y)dxfy(x,x2x2x2x2=x2x2當(xy)(0,0
x2x2
dxx2x2x2x2x2x2由于limf(xyf(0,0)fx(0,0)xx2x2
sin 0x0y
x2x2
x0yf(xy在點(0,0)fx(0,0)2fy(0,0)1(A)df(0,0)2dx(B)f(xy在(0,0)z(C)
f(x,在(0,0)jx0y
xf(x,y)必存 考慮二元函數(shù)
f(xy)的下面4個性質(zhì)
f(xy)(x0y0連續(xù)②
f(xy)(x0y0)兩個偏導(dǎo)數(shù)連續(xù);f(xy在(x0y0)f(xy在(x0y0)若用“P→QPQ,(A)(B) f(xy)|xy|(xy,其中(x,y在點(0,0)(x,y)在什么條件下,fx(x,y),fy(x,y)存在 ((x,y)0(x,y)在什么條件下,f(x,y)在(0,0)可微 ((x,y)0 1zf(xy,xx2y(xy2z
t)dtf和
x2
解:
y
tu,
(xx2
y
t)dtxy2(u)(du)x2yz
f1yf2
y)(xy2)y2(x2y)2xy2z
f1y(f11xf12x)x2f2fx2(f21xf22x)2y(xy2xy3(xy2)2x(x2y)2x3y(x2
y19x2y20有形如ux 解設(shè)ry,則u(rxu
r
y
2uy2
2y (r)
u r1
2u
1 (r)
x
y22y1 y2
2yx2x既 x2x 亦 (1r2)2r
(r)c1arctanr 故 u(x)c1arctanx
(c1,c2為任意常數(shù)3zf(x2y22z 2z 1 x2y2xxz
yzx2解:設(shè)zf(r),x2 2
rx dz dz
z
z
dz dr2z
dr
d
r r y2dr2z
,解得zc1cosrc2sinrrx2zx2
x2y2x2x2
x2z
f(t,et
,其中 具有一階連續(xù)偏導(dǎo)數(shù),
2z。2 (2xf2x3y(fexyf 2.已知函數(shù)uu(xyx2y2xy0,試確定參數(shù)a,b變換u(x,y)V(x,y)eaxby下不出現(xiàn)一階偏導(dǎo)數(shù)項 (a1,b13.設(shè)函數(shù)z
f(xy在點(1,1
3(x)
f(x,f(xx
d3(x)
x
1yy(x)zz(xzxf(xyF(xyz)0所確定的函數(shù),fFdzdy 解:zxf(xyF(xyz)0x
dz(
xf)Fyxfdx
fx(1 )
Fyxf
(Fxf
F(fxf FF F z
Fyxf2設(shè)函數(shù)u定,求du
f(xyzzz(xyxexyeyzez 解:duxdxydyx求導(dǎo),u
fxfzx,
z
z ex
ex
ey所以xezzezx
fxfzezzezy
fyfzez exxex eyyey所以dufxfzezzezdxfyfzezzez 3xyzlnyexz1,根據(jù)隱函敵存在定理,存在點(0,l,1)的一個鄰zz(xyy(xzzz(xxxyzzz(xxxyzyy(x解:選4zz(xy
0:c,f(xyf22
f
2
f22
2xyxy(x
y2d2證明:f(x, c為一直線,當且僅
0f(xyx求導(dǎo)ffdy0dyfxx y
f dy( xy
dx
f
d2 dy d2 fxx2fxydxfyy(dx)fydx2
d2必要性:若(x, c為一直線,
0,由(1)
2
dyxy
(dy)2yy
2
2
2
(f
20
f
(f
f22
f
2
f22
2xyxy(x
y2
式成立,即d2
2
dyxyd2
(dy)2yy比較(1)式,fy
0fy0
0,即(xy)c5z(xyF(xzyz0xzyzz 1 z)F(z1z)0,兩邊同乘x2y,1 y xyzFx2
xzFy2xzx xF1xzyzz
,由對稱性得yzy xF1
x x(二) .設(shè)函數(shù)z
f(u)u(uyp(t)dtuxy的函數(shù),其中f(u),(up(u),(u連續(xù),且(u)1pyzp(xz 例1求函數(shù)uxyezxtyt22ztt3M(1,1,0
t1MM M 其方向余弦為cos
,cos
cos3
2 xcosycoszcos
1 1 2xtyt2zt3x2y3z0垂直的切線方程,ux2y2z2z 解:設(shè)切點參數(shù)為t0s1,2t0,3t0n1,2,3,即00,所以t0切點(1,1,1s1,2,3x1y1z
123s0 123
cos cos 0 0
3x2y2z23上與(1,1,1點處的切平面平行的切平面方程,ux22y23z2在點(1,1,1x2y2z2300n2(Fx,Fy,Fz)(x,y,z)(2x0,2y0,2z0)//(x0,y0,z00n1n2x0y0z0x0y0z0切平面方程
(x1)(y1)(z1)n0
1,1
,取“+3 33133uucosucosu3133
0 0xayz3xayz3(1,2,5,求a,b
在平面上,而平面zx2y2x22.函數(shù)zx2 (B)偏導(dǎo)數(shù)存 (選2x22y2z212上求一點,f(xyz)x2y2z2
12
1,021f(xy在點(0,0)y
f(xyf(0,0)1(x2y2(A)點(0,0)f(xy極值點(B)點(0,0)f(xy(C)點(0,0)是f(x,y)極小值點(D)由條件不能確定(0,0)是否為極值 21f(0,0xy時,選例3f(xy預(yù)(x,y均為可微函數(shù),且(xy)0,已知(x0y0f(xy在約束條件(x,y)0下的一個極值點,下列選項正確的是(A)fx(x0y0)0fy(x0y0)(C)fx(x0y0)0fy(x0y0)
(B)fx(x0y0)0fy(x0y0)(D)fx(x0y0)0fy(x0y0)例4zf(0,00
f(xy的全增量z2x3)x2y4)y
(1)z的極值;(2)zx2y225(3)zx2y225z2x3z2y4zx23xyzy2y 所以yy24yc
zx23xy24y
,由f(0,0
,得c0zx23xy24z2x3 x
2z
2z
2z (1)由 A
2,B
0,C zy2y4
y1
ACB240A20z3,26.252(2)L(x,y,)x2y23x4y(x2y2Lx2x32xL2y42y
x3得
,z(3,4)
,及x33z(3,4
yx2y225 5F(xyz處處有連續(xù)的偏導(dǎo)數(shù),并且三個偏導(dǎo)數(shù)在任何一點不同時等于零,又設(shè)曲面S:F(x,y,z)0不含原點M(x0,y0,z0)是曲面上距原點最近的點。求證該M(x0,y0,z0)的法線經(jīng)過原點。證明只須證明曲面在點M(x0,y0,z0)處的法向量平行于OM(x0,y0,z0) 條極值問題minf(x,y,z)x2y2F(x,y,z)f(xyzS上任一點(xyz
L(x,y,z)f(x,y,z)F(x,y,
f(xyz)在點M(x0y0z0x0y0z0(x0,y0(x0,y0,z(x0,y0,z0
2
(x0,y0,z0(x0,y0,z0(x0,y0,z0(x,y,z
FF于是向量
0與x,y,z
(x,y,z00
S:F(x,y,z)
在點M(x0y0z0
FFFx,y,z
SM(x0y0z0M(x0y0z0 (x,y,z00與向量OMx0y0z01.設(shè)zz(x,y)是由x26xy10y22yzz2180確定的函數(shù),求z(x,y)的極值 (極小值z(9,3)3,極大值z(9,3)3)2.zf(xydz2xdx2ydyf(1,12f(xy D(xy|
(f(0,2f(0,22f(1,0f(1,03xoyDxy|x2y2xy75},小山的高度函數(shù)為h(xy75x2y2M(x0,y0為區(qū)域D上一點,問h(x,y)在該點沿平面的什么方向的方向?qū)?shù)g(x0,y0g(x0,y0Dx2y2xy75上找出使(1)g(xy達到(y2x)2(x2y 00 (y2x)i(y2x)2(x2y 00 (x0,y0 x2y22z24.已知曲線Cxy3z
,求Cxoy第七元數(shù)量值函數(shù)積分多元數(shù)量值函數(shù)積分的概念與性nnf(M)d=I=d
f(Mi)ii1f(M)在幾何形體f(M)在f(M)在有界閉幾何形體f(M)在上必可積。11dd.2[f(M)g(M)]d
f(M)d
g(M)d 3f(M)df(M)df(M)d
f(M)g(MMmf(M)在閉幾何形體f(M)在閉幾何形體上連續(xù),則在M0 f(M)df 二重積 f(x,y)d=limf(, 0iD三重積分f(xyz)dv
f(i,i,i)
0i i i 對弧長的曲線積 f(x,y)ds= f(,0 i i i f(x,y,z)ds f(,,0nf(x,y,z)dS=limf(i,i,i)Sin
二重積計算方法畫線定限”累次積分積之。 1方法“畫線”定限(切點D)12y后xI1
xsin3
ex2,cosx2,sinx2sinxx
2
y例1計算0xdxx 2y
2y y
12
y
dy0
dy0xdx30y 12y2dey21y2ey22
y 26 6
14e4ey221(15e46
0
21dxxsin2ydy2dxxsin2ydy。解交換積分次序 y 2 2 I1
sin2ydx
2)dy
y
dy (2 1xb例3計算
(a,b0
xyxyy
b0=dxxydydyxydx0
dy
ay
a4
xxxD
dxdyDx2y21xy1解Dx r(cossin
2dxdy2d
Dx
42(cossin1)d 例5 (|x|D:|x||解:原式4|x|dxdy41dx1xxdyD D16(xy)dxdyD是圓心(a,bRD(xy)dxdy((xaybab))dxdya 7xydxdyD是雙紐線(x2y222xyD解:雙紐線(x2y222xy的極坐標方程為r2sin原式22d
sin
rcosrsinrdr 例8 D:x2y2
1 1 解 xdxdyD:x2y2
ydxdyD:x2y2
(x2D:x2y22
)dxdy2
d0rdr9f(x在0x1f(x)01
1xf21 1
1f21010f10
(x)dx0xf(x)dx0
(x)dx0f1 =0
(x)dx0yf(y)dy0
(x)dx0f(y)dxD
(x)f(y)(y=f2(y)f(x)(xy)dxdy1f(x)f(y)(yx)(f(x)f(y))d 210|x2y21|dxdyDx2y29D解Dx2y21D:1x2y2 原式(1x2y2dxdy(x2y21)dxdy 11求emax{x2y200y0x1y解:emax{x2y2}dex2dey2d0x1y
ex
ey
dxe100y
12[xy]dxdyDxy|0x2,0yD解:xyjj1,2,3,4DDk(k1,2,3,4,則[xy]k1k1,2,3,4,因而[xy]dxdy0dxdydxdy2dxdy3dxdy32331
f(x連續(xù),f(0)1F(t)
f(x2y2x2y2t
t0)F000解F(t2dtf(r2rdr2tf(r2rdrF(t2f(t2000F(0)limF(t)F(0)lim2f(t2)2f(0)
t
t2yydxdyDx2,y0,y22yD所圍成的平面區(qū)域 (4 2計箅二重積分|yx2|dxdy,其中D{(x,y)||x|1,0y (11 設(shè)D={(x,y)|x2y2 2,x0,y0},[1x2y2]表示不超過1x2y2的最大數(shù),計箅二重積分xy[1x2y2]dxdy (3 f(x在[a,bf(x)0,證明bf(x)dxb1dxb aff(x在(0,f(t)e4t2
x2y24t
f
dxdyx2x2f(t
f(t)e4t2(4t2三重積概念與形 投影
f(x,y,z)dvbdxy2(x)dyz2(x,y) y1( z1(x,y
f(x,y,z)dvc2dzf(x,y,z z柱面坐 f(x,y,z)dxdydz=f(cos,sin,z)dd f(xyz)dxdydzf(rsincosrsinsinrcos)r2sin 一般方法f(xyz)dxdydzF(uvw|J|
V其 F(u,v,w)
Vf(x(uvwy(uvwz(uvw
y21(x2y2z)dV:由曲線
z圍成
x解:x2y22z4 4I (x2y2z)dxdydzd
2z(r2z)rdr2560Dz:x2y22
448 dx2y2(x2y2z)dzd rdrr2(r448
z)dz
2563 Dxy:x2y2 R2x2例2計算三重積分(3x25y27z2)dV,R2x21解設(shè)x2y2z2R2,則由3x25y27z2z1(3x25y27z2)dV1(3x25y27z21 21由輪換對稱性x2dVy2dVz2dV1(3x25y27z2dV 故原式1(3x25y27z2dV1x2dV5y2dV7z2dV22
1
233(xyz)dV 51(x2y2z2)dV71(x2y2z2)dV
5(x2y2z22152dsindRr2r2dr2 0P0距離平方成正比(k>0),求球體質(zhì)心位置。0解:設(shè)球體為Ω,球心為原點,P(0,0Rx2y2z2R2(xyz
xy zk(x2y2(zR)2 2Rz k(x2y2(zR)2
(x2y2z2RzR22R(x22z2
8
R2dsindRr2r2drR2
4求f(xyz)dV,其中x2y2z2(xyz)2f(x,y,z)
當zx23x2x23x23解:原式(x2y2z22xy2yz2xz)dV
0
3
3
r3cos 例5設(shè)函數(shù)f(x)連續(xù)且于零f(x2y2z2F(t):x2y2z2t
f(x2y2t,G(t)D:x2y2ttf(x2y2D:x2y2tF(t在區(qū)間(0,證明當t0F(t)2G(t
f(x2 2dsindtf(r2 2f(r 000(1) 0002dtf(r2 tf(r2tf(tF(t)
)0f
)r(t0F(t在(0,t2 t20f
)rdr (2)t0F(t2G(t20f
)rdr20f
tf(r20
tf(r2)dr只需證(t)
f
2)r
f(r
f(r
)rdr
0tt tt1又(0)0,所以(t)01
(t)
f(t2)0
f(r2)(tr)2dr1 1
:x2y2z2R2
z0
2
:x2y2z2R2x0y0z0(A)xdV4
ydV4 (C)zdV4 (D)xyzdV4
2.計算f(xyz)dVx2y2za)2a2x2f(x,y,x2
x2y2
,當zx2,當0x2
a4x2x22
16第一型曲線積f幾何解釋:1.
12.Lf(xy)dsf(xy0xOyL為zf(x,y)的柱面面積。xy
ds
x2y2
yy(x)ds1y2ds1y2xr()(dx)2(dy)2rr()(dx)2(dy)2
r2r2x yzy
ds
x2y2z2 z(x
ds
1y2z2dx(此類空間曲線常以隱式方程形式出現(xiàn)特殊的:平行x軸線段dsdx,平行y軸線 ds
x2y2z21I(zy2dsc為 xyz解曲線cx2y2z2R2xyz0xyzzdsydsxds1(xyz)ds10ds 3 3y2dsx2dsz2ds1(x2y2z2)ds1R2ds1R22R2 3
3 I(zy2)ds2R3 1x2y2z2R2x0y0z0的邊界曲線的質(zhì)心,l
(3
4R
4R第一型曲面積
1zz(xy dS
1z2z2 f(x,y,z)dS f(x,y,z(x,y)1z2z2 yy(zx),則 dS
1y2y2 f(x,y,z)dS f(x,y(z,x),z1y2y2 Dyzxxyz dS
1x2x2 f(x,y,z)dS f(x(y,z),y,z1x2x2 (一)1(x2y2z2xy2x2yz)dS,其中x2y2
(0z1zx222解:由對稱性,得xy2dS1zx222 原式 (2(x2y2) x2y2)2dxdy Dxy:xy(332設(shè)曲面|x||y||z|1(x|y|)(333S為球面(xa)2yb)2zc)21(xyS解(xyz)dSxaybzc)]dS(ab 由于球面(xa)2yb)2zc)21xaybzc(xa)dS(yb)dS(zc)dS (xyz)dS=(abc)dS4(ab 例4((2x3x2cos2y3y2cos3(z21cos)dsz1x2y2(z0),coscosco為曲面上任意一點法向量的三個方向余弦(cos0)解:設(shè)
z:x2y2
原式
(6x22x6y22y6z)dV2
2
1r =6(x
z)dV3
(rz)dz323(二)1S:x2y2z2a2z0SS1
xdS4 (B)xdS4 (C)zdS4 (D)xyzdS4
x2計算曲面的質(zhì)量其中為錐面z 在柱體x2y22x2任意一點(x,y,z)處的面密度函數(shù)為該點到xoy面的距離 ( 29 (4(abc)R2
I(xyS
S:(xa)2(ya)2(za)2R的球面x2y2z2a2a0R球面在定球 的面積最大 (R4a38線積分與曲面向量值函數(shù)在有向曲線上的積分第二型曲線積
w|F||l|cosF變力沿曲線運動
dw|F|dsPdxQdy,則WLPdxQdy平面曲線LPdxQdyLPdxQdyRdz,性質(zhì)LP(x,y)dx+Q(x,y)dy=t1{P[x(t),y(t)]x(t)Q[x(t), P
ydxdyLPdxQdyL的取正向的邊界曲線,D為單連通區(qū)域,P,QDLP(x,y),Q(x,y)及DLPdxQdy=0DCLPdxQdy(3)存在u(x,y(3)存在u(x,ydu=P(x,y)dxQ(x,y)dyPdxQdyduu(4)
D內(nèi)恒成立(2)例1
OmA是位于連接O(0,0A(的線段OA下方的任一光滑曲線。且OmA與OA所圍圖2.ABBOB(0,I
(QP Om0(()cosx)dx0(1)dy22 xdy
例2L
x2
L為上半橢圓a2
1(abA(a,0)B(0,b)C(a,0)
y2(x2y2
Q,積分與路徑無關(guān),取l
(上半圓xacos即yasin原式
xdyydx
xdyydx
0(a2cos2ta2sin2t)dtallx2 2 a2all3設(shè)(xy),v(xyD:x2y22x2yD曲線C上u(xy)x,v(xyyuu)vvv xy)vxy)u]dxdyuvdxuvdyxydx (yx)dxdy[(y1)(x1)2]dxdy2dxdy 4D為曲線Cr1cosA,C C函數(shù)uu(xyDx2y21,證明ndsACu是uDuds(ucosucos)ds(ucosucos)dsudyuC
C
C
C (x2y2)dxdydxdyA20d
rdr 2 2x4例5設(shè)f(u)存在連續(xù)的導(dǎo)數(shù),且0f(u)duA0,L為半圓周2x4B(2,0。計算
f(x2y2)(xdxX(xy
f(x2y2)x,Y(x,y)
f(x2y2y,f(x2y2)(xdxydy)
XdxX(xy),Y(xyY2xyf(x2y2) f(x2y2)(xdxydy)=
f(x2y2)(xdx2f(x2)xdx14f(u)du0
2
(xay)dx(x
為某函數(shù)的全微分,a。a計算L
xdyydxLABCA(1,0x2y21B(1,04x2到Dxy|0x,0y}LDxesinydyyesinxdxxesinydyyesin xesinydyyesinxdx2L計算曲線積分I
xdybxbxaL
(ab0ab)L是以點(1,1)為中心,R(R
2為半徑的圓周,取逆時針方向。R
2I0R2
2時, 2
xdyydxA(常數(shù),其中(x)L是繞原點(0,0) y
xdyCC為任一不過原點也不包圍原點的正向閉曲線,證明(xy2C當(1)4時,求(x)及A ((x)4x2,A向量值函數(shù)在有向曲面上的積 流量Q|v|Scos(nv)vsdQvdsPdydzQdzdxv(P(x,y,z),Q(x,y,z),R(x,y,vdSPdydzQdzdxS SS S R
x
zdvPdydzQdzdxRdxdy R或x
zdv(PcosQcosRcos 這里是的整個邊界曲面的外測coscoscos是在點(x,yz)向余弦
xdydzydzdx
1I
3(x2y2z2
a2
1
xy
0xyzI
2 xdydz
zdxdy222
dv 例2
x2y2
,其中是由曲面x
R及兩平zRzR(R0)所圍表面的外側(cè)解:設(shè)123依次為xy
xyxy
xyxy
(R)2dxdyx2y21
x2y22 R2
x2y2R
x2y2R2
x2y2R
x2y2 x2y2
R2
dydz
R2
R2 R2
R2
dydz2
R2y2R
z223If(xyzx)dydz2f(xyzy)dzdxf(xyzz)dxdyfxyz1被坐標面所截部分,上冊。F(x,yz)xyz1I((f(x,y,z)x)Fx(2f(x,y,z)y)Fy(f(x,y,z) ((f(x,y,z)x)1(2f(x,y,z)y)1(f(x,y,z) (xyz)dxdydxdy 第九窮級級數(shù)的知識級數(shù)的概念與性1u1+u2+u3++un+=un sn=ui稱為部分和,若limsns稱無窮級數(shù)un
uns,則kunks unvns,,則級數(shù)(unvns
如果級數(shù)un(u1un)(un1un)(un1
)
k un收斂,則limun
數(shù)項級 小收,小發(fā)大比較法 正項級數(shù)比值法
n
nn根植法 nn
xfdx
( 交錯級數(shù):萊布尼茲判別法,un1un,limun任意項級數(shù)
函數(shù)項級收斂半徑R
數(shù)項級(一)
1(1)若an收斂,則
(2)
1,則an(3)n
n
n 若a收斂,則a2(4)若a2收斂,則a3nn
n
n
n 例2證明若偶函數(shù)f1
f(x)x0的某鄰域內(nèi)有二階導(dǎo)數(shù),且
f(0)1,則n n1 f(xf(0
f(x)f(0)f(0)x
f(0)x2o(x2)f11f(0)
o1,
f11
f(0)
o1
f(0)n
n2 n
n2
|u|f11
f(0) f1即 n n2,故n 絕對收斂 n1 3設(shè){un},{cn cu un,滿足nu
n
n
n
n1
nn,滿足cnncn1a(常數(shù)a0,且 收斂,則un也收un
n1
n(1)
c cucu,從而un11,由
n
n n 1
n1unnn(2)由條件 unn
a0,得
c
cu,所以uc1u1un
n
n
n n
1 nc1收斂,則uc n1
n n 4設(shè)正項數(shù)列{an}單調(diào)減少且(1)an發(fā)散,證明(1)1n1n
n
an{a}單調(diào)減少且(1)nalim
a0n
a n
n 所以
1an1anan11(a
,而(a
部分aaa naaa
n
nSna1an1a1an,所以原級數(shù)絕對收斂n例5xnnx10,其中nxnaa1時。級數(shù)xnfn(1)n
nn(x)xnnx1,x(0,f(x)nxn1n0n
fn(0)10nxnnx10n
(0,1
0x
n1x1f n1x1 n 6設(shè)a和ban1bn1b收斂時,nn
n
n
n 也收斂;當anbnn
nan1bn1 a2b2,a3b3,,
b1
a1
an
a
ban
1 有比較法知,當bnan也收斂;當anbnn
n
n
n
7設(shè)正項數(shù)列{a}單調(diào)減少,且(1)na發(fā)散,試問
n
n1an解由于an0{an}limanan
a0n若a0,則由萊布尼茲判別法有(1)na收斂,與假 ,故a0。于nn 1 1 1,從而 a a a
a
,而a
1
(二) a0p0limnpen1a1,若級數(shù)a (p2
n
n設(shè)annn
n
ununn
n
(u2n
u2n
n
un1
0設(shè)an4tann0(1)求n
1(a
an
1(2)證明:對任意的常數(shù)0,級數(shù)n
1 1
設(shè)a12an12an
1y
nyx
y(0)
n1
n
y111
,試討論級數(shù)
n
n散性
n1 n討論級數(shù)p的斂散性nn若0p1p1時級數(shù)絕對收斂)ab,若其滿足
nn
n
an
性之間的關(guān) (當an發(fā)散時,bn必發(fā)散;當bn收斂時,an必收斂n
n
n
ny2exsin
(x0)x
e1關(guān)于冪級冪級數(shù)的收斂半徑于收斂若n
R22(RR內(nèi)ax(且內(nèi)閉一致收斂nn函數(shù)展開成冪級f(n)(0) f(n)(x f(x)~ x或 0(xx0n n 1)1
1xx2x3(1)nxn
1x12)1
1xx2x3xn1xe
1x22
xnn
(x3sinxx3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智慧社區(qū)物業(yè)合同財務(wù)管理與社區(qū)治理協(xié)議3篇
- 二零二五年度綠色建筑勞務(wù)分包合同綠色認證要求3篇
- 二零二五年度古建筑測繪與修復(fù)保護合同范本3篇
- 2025年度廠房車間裝修與智能化物流系統(tǒng)建設(shè)合同4篇
- 個人承包綠色食品生產(chǎn)與銷售合同(2024版)3篇
- 2025年無償使用體育場館場地舉辦賽事合同范本3篇
- 二零二五年礦泉水企業(yè)社會責(zé)任承諾書合同范本3篇
- 2025年度事業(yè)單位集體合同生效機制及管理規(guī)范
- 2025年度廠房建設(shè)項目環(huán)境影響評價及治理合同4篇
- 二零二五版高端酒店客房裝修及配套設(shè)施安裝合同3篇
- 稽核管理培訓(xùn)
- 電梯曳引機生銹處理方案
- 電力電纜故障分析報告
- 中國電信網(wǎng)絡(luò)資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術(shù)試卷試題真題(答案詳解)
- 《品牌形象設(shè)計》課件
- 倉庫管理基礎(chǔ)知識培訓(xùn)課件1
- 藥品的收貨與驗收培訓(xùn)課件
- GH-T 1388-2022 脫水大蒜標準規(guī)范
- 高中英語人教版必修第一二冊語境記單詞清單
- 政府機關(guān)保潔服務(wù)投標方案(技術(shù)方案)
評論
0/150
提交評論