可再生氫在中國的前景及在工業(yè)脫碳中的作用_第1頁
可再生氫在中國的前景及在工業(yè)脫碳中的作用_第2頁
可再生氫在中國的前景及在工業(yè)脫碳中的作用_第3頁
可再生氫在中國的前景及在工業(yè)脫碳中的作用_第4頁
可再生氫在中國的前景及在工業(yè)脫碳中的作用_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

????????????????????ProspectsofReThewableHydrogeThiThaThdItsRoleiThIThdustrialDecarboThizatioThProspectsfennadItsenIndustrialExecutiveExecutiveSuThThary執(zhí)行摘要作為全球最大的氫能生產(chǎn)和消費國,中國每年生產(chǎn)氫氣高達(dá)3,400萬噸左右。中國當(dāng)前制氫路線以煤為主(72%),并有約450萬噸未被有效利用,未來可用于工業(yè)脫碳等領(lǐng)域,并能為可再生氫產(chǎn)業(yè)鏈的建設(shè)打好基礎(chǔ)。中國的電解制氫仍處于起步階段,各地規(guī)劃的32個可再生氫氣試點項目設(shè)計年度總產(chǎn)能已超過29.7萬噸。推動中國可再生氫產(chǎn)業(yè)鏈發(fā)展重在下游應(yīng)用端。然而,氫作為一種能源載體,在轉(zhuǎn)換過程中伴隨較大的能量損耗。因此,如何盡快明確最適合可再生氫應(yīng)用的場景,即“無悔”選項,已成為當(dāng)務(wù)之急氫能有望成為大規(guī)模長時間儲能的解決方案為風(fēng)電光伏等間歇性可再生能源發(fā)電提供托底保障??稍偕鷼湟灿型ε欧琶芗凸I(yè)流程的深度脫碳。在上述應(yīng)用場景中,可再生氫能夠有效替代化石燃料作為能源載體和生產(chǎn)原料的雙重角色。以鋼鐵行業(yè)為例,氫直接還原鐵可以大幅降低焦炭消費。在海運和長途飛行領(lǐng)域,直接通過電氣化減少碳排放不但效率低下而且成本高昂,采用可再生氫被廣泛認(rèn)為是實現(xiàn)凈零排放的不二法門。中國和德國同為制造業(yè)大國,都設(shè)置了在本世紀(jì)中葉實現(xiàn)凈零排放的氣候目標(biāo),因此在清潔能源轉(zhuǎn)型領(lǐng)域面臨著諸多共同挑戰(zhàn)。盡管俄烏沖突全面爆發(fā)導(dǎo)致了全球范圍的能源安全焦慮,德國仍在為實現(xiàn)2045年氣候中性目標(biāo)而加速布局可再生氫能政策和產(chǎn)業(yè),以有效支撐本國的清潔能源轉(zhuǎn)型進(jìn)程。作為極具氣候雄心的發(fā)達(dá)經(jīng)濟(jì)體,德國在氫能經(jīng)濟(jì)領(lǐng)域的經(jīng)驗和教訓(xùn)可以幫助中國培育本國處于起步階段的可再生氫產(chǎn)業(yè)鏈。本文從氫能治理結(jié)構(gòu)、提高氫能經(jīng)濟(jì)可行性措施和促進(jìn)氫能應(yīng)用等方面剖析了德國2020年6月發(fā)布《國家氫能戰(zhàn)略結(jié)合中國2021年3月發(fā)布《氫能產(chǎn)業(yè)發(fā)展中長期規(guī)(2021-2035年以及電動汽車在中國的發(fā)展歷程,作者基于中國具體國情提出了以下有針對性的政策建議:為更好更快建立工業(yè)化規(guī)模的低碳?xì)涔?yīng)鏈,中國應(yīng)在充分利用本國現(xiàn)有化石燃料制氫產(chǎn)能的同時激勵可再生氫產(chǎn)能的持續(xù)增長?;谥袊陔妱榆嚢l(fā)展助力交通行業(yè)減排過程中所取得的經(jīng)驗,在氫能產(chǎn)業(yè)鏈規(guī)?;?,擴(kuò)大氫能的下游需求與上游的低碳生產(chǎn)應(yīng)該區(qū)分對待。擴(kuò)大可再生氫產(chǎn)能應(yīng)與鼓勵氫能大規(guī)模應(yīng)用同時推進(jìn),從而在氫能產(chǎn)業(yè)鏈的上、下游之間產(chǎn)生正向激勵效應(yīng)。另一方面,本世紀(jì)初以來全國燃煤發(fā)電裝機(jī)的快速擴(kuò)張已提前鎖定了巨量煤炭需求,中國應(yīng)以此為鑒,盡量避免進(jìn)一步擴(kuò)大現(xiàn)有化石燃料制氫產(chǎn)能規(guī)模。氫能管制應(yīng)更多側(cè)重其能源屬性。目前,中國仍將氫氣作為危險化學(xué)品進(jìn)行標(biāo)識和監(jiān)管,對其能源屬性沒有予以充分考量和反映。對氫能的危化品定位在生產(chǎn)選址、道路運輸、市場準(zhǔn)入、終端應(yīng)用以及標(biāo)準(zhǔn)化等方面帶來了一系列重大挑戰(zhàn)。中國未來是否能夠更加合理地對氫能進(jìn)行定位是實現(xiàn)氫能規(guī)模經(jīng)濟(jì)性的重要先決條件??稍偕鷼湓诠I(yè)深度脫碳中的作用應(yīng)被優(yōu)先考慮,并重點聚焦鋼鐵、石油化工和煤化工產(chǎn)業(yè)。鑒于可再生氫在重工業(yè)應(yīng)用中的巨大潛力工業(yè)脫碳應(yīng)成為中國實現(xiàn)可再生氫供應(yīng)鏈規(guī)模經(jīng)濟(jì)性的重點領(lǐng)域。除了盡快將排放密集型的工業(yè)行業(yè)納入全國碳排放交易體系,還應(yīng)考慮將德國乃至歐洲的創(chuàng)新政策和金融政策工具針對中國國情進(jìn)行定制和試點,尤其是綠鋼的政府采購、碳差價合約和氣候友好型原材料的需求配額。為更好促進(jìn)可再生氫在中國的發(fā)展,應(yīng)建立氫能部際協(xié)調(diào)機(jī)制,并最好由國務(wù)院直接領(lǐng)導(dǎo)。否則,氫能治理的職責(zé)如果長期分散在在不同部委之間,將會阻礙氫能的長足發(fā)展,并使中國錯失先機(jī)。建議由該高層協(xié)調(diào)機(jī)制主導(dǎo)對建設(shè)跨省氫能管道這一無悔基礎(chǔ)設(shè)施的必要性和規(guī)劃展開調(diào)查研究,以積極應(yīng)對中國氫氣生產(chǎn)、消費地理錯配的挑戰(zhàn)。中央和地方政府補貼氫能發(fā)展時,應(yīng)在制度設(shè)計層面防范“騙補”亂象并促進(jìn)公平競爭。根據(jù)以往補貼政策實施過程的經(jīng)驗教訓(xùn)——尤其是電動汽車領(lǐng)域——中國氫能監(jiān)管框架應(yīng)重視制約與平衡,并納入多重監(jiān)督機(jī)制。為了縮小與發(fā)達(dá)經(jīng)濟(jì)體在氫能核心技術(shù)領(lǐng)域的差距,中國應(yīng)考慮為包括跨國公司與本土企業(yè)在內(nèi)的市場主體營造更加公平的競爭環(huán)境。如果能夠大幅加強知識產(chǎn)權(quán)保護(hù)、積極消除市場準(zhǔn)入壁壘,中國將能更好地深化與發(fā)達(dá)經(jīng)濟(jì)體在可再生氫領(lǐng)域的國際合作,并吸引歐盟特別是德國公司來華展開互利雙贏的技術(shù)合作和商業(yè)投資。21Statusquo:hydrogeThproductioThiThChiThadoThiThatedbyfossilfuels 1Coal-reliaThthydrogeThproductioThiThChiTha 2SigThificaThtpoteThtialtoscaleuphydrogeThutilizatioThiThChiTha 3RatioThaleforChiTha’sreThewablehydrogeThecoThoThy 5VersatilehydrogeTh 5SectorcoupliThgviareThewablehydrogeTh 5hyfhoedadrs 7ReThewablehydrogeThiThChiTha 8ReThewablehydrogeThproductioThcoThceThtratesiThNorthChiTha 8MisThatchbetweeThsupplyaThddeThaThdofreThewablehydrogeTh 92No-regret:hydrogeTh'sroleiThChiTha'siThdustrialdecarboThizatioTh 10ReThewablehydrogeThapplicatioThsceTharios 11No-regretutilizatioThofreThewablehydrogeThiThiThdustrialprocesses 123GerThaThy'sThatioThalhydrogeThstrategyaThdiThplicatioThsforChiTha 13GerThaThhydrogeThpolicytoolsaThddedicatedgoverThaThce 14StructuredgoverThaThceaThdthepolicyeThviroThTheTht 14MakiThgreThewablehydrogeThecoThoThicallyviable 15ProThotiThghydrogeThapplicatioThsiThkeydowThstreaThsectors 15sfUhrth)debChiTha’sThatioThalstrategyforhydrogeTh 17IThprovedcoordiThatioThofhydrogeThvaluechaiThgoverThaThce 17DetailedsupportiThgpoliciesyettobeproThulgated 18TheTheedtoeThphasizehydrogeTh’sroleiThiThdustrialdecarboThizatioTh 184ExperieThceaThdlessoThsofChiTha'sEVprograTh 19SeparatioThofupstreaThpowerproductioThaThddowThstreaThEVdeployTheTht 20AvoidiThgfraudaThdproThotiThgfaircoThpetitioTh 215PolicyrecoThTheThdatioThs 22AThThexAAlistofreThewablehydrogeThprojectsiThChiTha 24AThThexBAlistofselectedkeystakeholdersforhydrogeThgoverThaThceiThChiTha 28RefereThces 291Status:hydrogeninChinadyfossilfuels1ExceptforrarecircuThstaThces,TholecularhydrogeThdoesThotoccurThaturallyiThtheearth’scrust,butofteThcoThbiTheswithoxygeTh,carboTh,ThitrogeThorotherat-oThstoforThcoThpouThdssuchaswater(H2O),hydro-carboThs(CxHy)orbioThass(CxHyOzNa).Therefore,techThologiestoproducehydrogeThgasatscalearees-seThtiallydiffereThtThaThufacturiThgroutesofseparatiThghydrogeThfroThitsvariouscoThpouThds.WhatThakesthehydrogeThecoThoThy—ahypotheticfuturesysteThofdeliveriThgeThergyaThdrawThaterialsthroughtheuseofhydrogeTh—challeThgiThgisthefactthatthehydro-geThvaluechaiThiThcludiThgproductioTh,traThsportatioTh,storageaThdeThdusesThayThotalwayscoThewithclearbouThdaries.IThotherwords,hydrogeThproductioThaThdcoThsuThptioThofteThoccuriThthesaTheiThdustrialfacili-ties,aThdhydrogeThprosuThersiThcludebutareThotThec-essarilyliThitedtoThaThufacturersofcoke,aThThoThia,ThethaThol,chlor-alkali,petrocheThicalsaThdtheChi-TheseThoderThcoalcheThicalssuchascoal-to-oil,coal-to-gas,coal-to-olefiTh,aThdcoal-to-ethyleTheglycol.HydrogeThThadewitheThergyderivedfroThreThewablesourcesistypicallykThowThas“reThewablehydrogeTh”iThtheiThterThatioThalcoThtext,especiallyiThtheEuropeaThUThioTh(EU).1AtpreseTht,ChiThalacksaThatioThalstaTh-dardforreThewablehydrogeTh,buttheEUdefiThitioThiswidelyaccepted.WithThorecouThtriesadoptiThgTha-tioThalhydrogeThstrategies,aThdrisiThgbusiThesseThthu-siasThtowardsdeThoThstratioThprojects,thecoThceptof

areThewablehydrogeThecoThoThyhasgaiThedworldwideThoTheThtuTh.However,todate,96%ofglobalhydrogeThsupplystillorigiThatesfroThfossilfuel-basedproduc-tioThroutessuchassteaThThethaThereforThatioTh(SMR),coalgasificatioThaThdcokeThaThufacturiThg.ToacceleratetheglobalcleaTheThergytraThsitioThaThdachievecliThateTheutralitybyThid-ceThtury,thereisacoThseThsusthattheworldThustdrasticallycurbfossilfuelcoThsuThptioTh.AlthoughhydrogeThhasbeeThiTh-dispeThsableiThtheeThergyaThdcheThicaliThdustriesfordecades,theeThviroThTheThtalfootpriThtoftheexistiThghydrogeThvaluechaiThisuThsustaiThable.HeThce,iThju-risdictioThswithThet-zeroeThissioThgoalssuchastheEUaThdChiTha,electrolytichydrogeThproductioThpow-eredbyreThewableeThergyhasdrawThatteThtioThasaversatileaThdsustaiThableeThergyvectorwithpoteThtialtohelpdecarboThizetheeThergyecoThoThy,especiallyiThcarboTh-iThteThsiveiThdustrialsectors.AsChiTha’ssecoThdlargesttradiThgpartTheraThdaThad-vaThcedecoThoThywithaThbitiouscliThateaspiratioTh,theEUiThgeTheralaThdGerThaThyiThparticularplayaleadershiproleiThcoThceptualiziThgaThdThurturiThgtheglobaldevelopTheThtofareThewablehydrogeThecoThoThy.Naturally,EuropeaThpracticesaThdlessoThs,especiallythosefroThGerThaThy,areparticularlyrelevaThttopoli-cyThakersiThChiTha,thelargesthydrogeThproduceraThdcoThsuTheriThtheworld.Coal-reliantCoal-relianthydrogenproductioninChinaFigure1.Hydrogenproductionmixbysourcein2020:Chinaversustheworld19%21%60%Word19%21%60%ChiTha(by-productseparated)1414% 1%20%65%18%30%48%18%30%48%4%ChiTha(by-source)1010%14%4%72%Coal Nalas Oil olsis Dedidolsis ypodutSource:IRENA,IEA,andtheauthors’ownestimation.Source:TheEuropeanCommission,accessedon12March2022athttps://energ.ec.europa.eu/topics/energy-system-integration/hydrogen_en.OThthesupplyside,ThatioThalhydrogeThproductioThacrossChiThaisestiThatedtoreach34.1ThillioThtoThs(Mt)iTh2020,aslight2%year-over-year(YOY)up-tickfroTh33.4MtiTh2019.HydrogeThThaThufacturiThgiThChiThaisdoThiThatedbyfossilfuels,with96%ofsup-plycoThiThgfroThcoal,Thaturalgasoroil.ElectrolysisiThcludiThgchlor-alkaliby-productioThaThdwaterelec-trolysisoThlyaccouThtforthereThaiThiThg4%ofThatioThaloutput.Coal-basedhydrogeThproductioThraThksthefirstwith72%ofTharketsharelargelyduetodoThes-ticallyabuThdaThtaThdaffordablecoalresourcesaswellasChiThesegoverThTheTht’slargelysupportiveattitudetowardsthecoalcheThicaliThdustry,especiallyatthelocalgoverThTheThtlevel(Figure1).

AThoThgcoal-derivedhydrogeThThethods,coalgasifi-catioThoutweighsby-producthydrogeThproductioThofbothcokeaThdchlor-alkaliThaThufacturiThg,withtheiroutputstaThdiThgat14.4Mt,10.4Mt,aThd1.0Mtrespec-tivelyiTh2020(Figure2).CurreThtly,electrolytichydrogeThproductioThiThChiThaisstillatitsiThfaThtstage,coThprisiThgofabout510thou-saThdtoThsperyear(kt/year)outputfroThreThewablehydrogeThdeThoThstratioThprojects(seeAThThexA:AListofreThewablehydrogeThprojectsiThChiTha)aThd925kt/yearsupplyfroThchlor-alkaliby-productioTh.CoThse-queThtly,waterelectrolysisbyreThewablepower(re-ThewablehydrogeTh)iseveThThoreThegligible.SignificantSignificantpotentialtoscaleuphydrogenutilizationinChinaFigure2.Chinahydrogenflow2020AThThoThiaAThThoThia106tCoalgasificatioTh14.4MtMethaThol80tCoeThaThufacturiThg104tHeatiThg50tOl33ate45Natualgas47thg30Chlor-alkai10ateretois05Others32ConsumptionPoductionOThthedeThaThdside,aThThoThiaThaThufacturiThgisthelargesthydrogeThcoThsuThiThgiThdustryiThChiTha,followedbyThethaTholsyThthesis,petroleuThrefiTh-iThg,chlor-alkaliaThdotheriThdustrialprocesseswithby-producthydrogeTh,whichutilizehydrogeThoTh-siteforeitherprocessheatorasafeedstock.The4.5Mt/yeargapbetweeThThatioThalhydrogeThproductioThaThdsector-specificcoThsuThptioThrepreseThtshydrogeThwasteflows.AThuThberoffactorsaccouThtforthisConsumptionPoduction

oveThgasesproducediThcokefurThacesaThdsyThthesisgasesgeTheratediThcoalgasifiersareaThixtureofhy-drogeTh,ThethaThe,carboThThoThoxide(CO)aThdotheriThpurities.BeforeChiThaiThtroducedthedeThoThstratioThcityclustersforhydrogeThfuelcellvehicles,itusedtobeecoThoThicallyuThattractivetoseparatehydrogeThforuseratherthaThforoTh-sitecoThbustioThtoheatthecokeoveThs(5.0Mt)orasfeedstockgasesforThethaTholsyThthesis(1.0Mt/year)aThdaThThoThiaThaThufacturiThg(0.3Mt/year),orsiThplybeiThgveThtedaswastedis-charge.MeaThwhile,aThother0.4Mt/yearofby-producthydrogeThiswastediThvariouschlor-alkaliThaThufac-turiThgfacilitiesduetoalackofappropriateplaThThiThgaThdprocessoptiThizatioTh.Asaresult,greatpoteThtialexiststofurtheriThproveThaterialefficieThcythrough-outtheChiThesehydrogeThsupplychaiThiThtheyearstocoThe.CoThsideriThgtheThagThitudeaThdcoThpositioThofhy-drogeThproductioThiThChiTha,itisThaturaltokickoffthecouThtry’sfledgliThghydrogeThecoThoThybyfocusiThgoThutilizatioThofby-producthydrogeTh.IThthisregard,about1.3Mt/yearofby-producthydrogeThfroThcokeThaThufacturiThghasbeeThturThediThtoThethaTholoraTh-ThoThia,driveThlargelybyChiTha’siThcreasiThglystriThgeThteThviroThTheThtalprotectioThaThdiThdustrialefficieThcystaThdards.ITh2021,theChiTheseceThtralgoverThTheThtapprovedfivedeThoThstratioThcityclustersceThterediThBeijiThg,ShaThghai,GuaThgdoThg,HeThaThaThdHebeiProviThces.Thisfour-yearpilotprograThwasdesigThedtoproThotecoThThercialisatioThofkeytechThologiesrelatedtofuelcellelectricvehicles(FCEV),toestablishaThFCEVsup-plychaiTh,toexploreeffectiveFCEVbusiThessThodels,aThdtoiThproveregulatioThaThdiThdustrialstaThdards.TheceThtralgoverThTheTht’sstroThgsupportforFCEVcoThThercializatioThhasseThtaclearsigThaltothebusiThesscoThThuThity,whichhasstartedtoraThpupiThdustrialby-producthydrogeThutilizatioTh.Accord-iThgtoLiu&Shi(2021),theuThitproductioThcostofiThdustrialby-producthydrogeThiThChiThaisat¥6.2-22.3/kg(€0.9-3.1/kg),ThuchlowerthaThthatviawaterelectrolysisat¥22.9-51.5/kg(€3.2-7.1/kg)(Liuetal.,2022).2ThoughreThewablehydrogeThsupplyisThotwidelyavailableacrossChiTha,itsapplicatioThsiThFCEVscouldhelpeThcouragehydrogeThutilizatioThiThselectedcityclusters.Asaresult,the5.0Mt/yearofhydrogeThthatwereburThedoTh-siteforheatiThgaThdthe4.5Mt/yearofwastehydrogeThflowcouldbetappedfirstforThoreutilizatioThorrecovery.ObsoleteregulatioThsareoTheThajorbarrierthatpre-veThtsChiThafroThdevelopiThgaThiThterThatioThallycoTh-petitivehydrogeThecoThoThy.GoverThTheThtregulatioThs

requirelabeliThgaThdhaThdliThghydrogeThasahazardouscheThical,asdistiThctfroThotherThajoreThergyfuels.ThisspecificpolicyhasiThposedtreTheThdouschal-leThgesiThterThsofsitiThgproductioThfacilities,traThs-portatioThespeciallyviaroads,qualificatioThofThewiThdustrialeThtraThts,applicatioThsceThariosaswellasstaThdardizatioTh.RecoThTheThdatioThshavebeeThThadebyproThiTheThtde-cisioThThakersiThcludiThgforTherThiThisterofscieThceaThdtechThology,Dr.WaThGaThg,whosuggestediThNo-veThber2018thathydrogeThshouldberegulatediThac-cordaThcewithitseThergyThature,siThilarasgasoliTheordiesel,sothathydrogeThrefuelliThgstatioThscouldeThjoygreaterflexibilityiThterThsofsitiThg.ThisrecoThTheTh-datioThhasbeeThThotediThsubsequeThtgoverThTheThtpoli-cydocuTheThts.ForiThstaThce,thedraftEThergyLawpub-lishediThApril2020aThdthe2021GoverThTheThtWorkReportbothcategorizehydrogeThasaTheThergycarrier.TheChiTheseceThtralgoverThTheTht’ssupportforestab-lishiThgahydrogeThsupplychaiThwasfurtheruThder-piThThediThMarch2022bytheMediuTh-aThdLoThg-terThPlaThfortheDevelopTheThtoftheHydrogeThEThergyITh-dustry(2021-2035),theequivaleThtofChiTha’sThatioTh-alhydrogeThstrategy.JustoTheThoThthlater,the14thFive-Year-PlaTh(FYP)forNatioThalProductioThSafetyoutliThedtherequireTheThtofspeediThgupproductioThsafetystaThdardsforeThergiThgiThdustriesiThcludiThghy-drogeTh.IThJuThe2022,the14thFYPforReThewableETh-ergyDevelopTheThtfeaturesasectioTheThtitledProThot-iThgLarge-scaleUtilizatioThofHydrogeThProductioThbyReThewableEThergy,whichTheThtioThssectorssuchascheThicals,coalThiThiThgaThdtraThsportatioTh.LastbutThotleast,tofosteraThiThtegratedhydrogeThsupplychaiThhasbeeThiThcorporatediThtotheStateCouThcil’sOpiThioThsoThCoThpletely,AccuratelyaThdCoThpreheThsivelyIThpleTheThtiThgtheNewDevelopTheThtCoThceptaThdAccoThplishiThgCarboThPeakiThgaThdCar-boThNeutrality,whichistheoverarchiThg“1”ofChiTha’s“1+N”policyfraTheworkforachieviThgitsDual-CarboThGoals.FollowiThgthereleaseofChiTha’sMediuTh-aThdLoThg-terThHydrogeThPlaThoTh23March2022,Thoredetailed“N’s”areexpectedtoproThotethedevelop-TheThtofhydrogeThproductioTh,storage,traThsportatioThaThdutilizatioTh,especiallyiThcarboTh-iThteThsiveiThdus-trialsectorssuchasiThthesteelaThdcheThicaliThdus-tries.Exchangerate:€1=¥7.23.RationaleRationaleforChina’srenewablehydrogeneconomyAtthe75thUThitedNatioThsGeTheralAsseThblyoTh22SepteThber2020,ChiThaaThThouThcedplaThstopeakTha-tioThalcarboTheThissioThsbefore2030aThdachievecar-boThTheutralitybefore2060,acoThThitTheThtkThowThiThChiTheseasthedualcarboThgoals.SiThcetheaThThouThce-TheTht,expertshavedebatedpoteThtialpathwaystocoThpletelydecarboThizetheeThergyecoThoThyiThgeTheralaThdiThdustrialsectorsiThparticular.HydrogeThservesasapoteThtiallycarboTh-freeeThergycarrieraThdiThdus-trialfeedstockaThdcouldtherebyassistChiTha’straTh-sitioThfroThahighlyfossilfuel-reliaThtecoThoThytoaThiThcreasiThglyreThewables-doThiThatedsysteTh.VersatilehydrogenHydrogeThprovidesapoteThtialsolutioThforlarge-scale,loThg-duratioTheThergystoragethatcouldcoThpeThsatethevariabilityofreThewableeThergygeTheratioTh,espe-ciallywiThdaThdphotovoltaicpower.CoThparedwithothertechThologiesiThcludiThgbatteries,coThpressedairaThdflywheels,hydrogeThiswellpositioThedtoeTh-ableloThg-duratioThstorage,froThweekstoThoThths,aThdistheThostproThisiThgeThergiThgtechThologytobedeployedatscaleforloThgduratioThstorage.SiThce1972,theTeessidesaltfieldiThtheUKhasbeeThstoriThgalThostpurehydrogeTh(95%H2,3–4%CO2)iThthreeshallowsaltcaverThs(atadepthofarouThd400The-ters),eachofwhichhasacapacityofarouThd70,000cubicTheters(Th3)ofhydrogeThat45bar,3or25GWh.4TheexploratioThofutiliziThgreThewablehydrogeThforseasoThaleThergystorageishighlightediThChiTha’shy-drogeThplaThfor2021-2035.HydrogeThalsohasthepoteThtialhelpdecarboThizecar-boTh-iThteThsiveiThdustrialsectorswherefossilfuelisutilisedbothasaTheThergycarrieraThdasafeedstock.ReThewablehydrogeThisaTheThergiThgcarboTh-TheutralreduciThgageThtiThiroThaThdsteelThaThufacturiThg,aThdthushaspoteThtialtoeliThiThateotherwisehard-to-abateCO2eThissioThsfroThsteelThakiThgiThChiTha,whichaccouThtsforThorethaThhalfofglobalsteeloutputaThdabout15%ofChiTha’sThatioThalCO2eThissioThs.AThuTh-berofChiTha’sleadiThgsteeleThterprises,suchasHe-

beiIroThaThdSteel(HBIS),BaowuaThdJiaThloThg,beguThexperiTheThtiThgwithhydrogeThThetallurgy,aiThiThgtoexplorepoteThtiallowcarboThaThdThet-zerosolutioThswithreThewablehydrogeTh.ReThewablehydrogeThalsoproThotessectorcoupliThgbetweeThthecheThicaliThdus-tryaThdreThewablepower,leadiThgtolow-carboThsub-stitutioThoffossilfuel-basedhydrogeThiThaThThoThia,ThethaTholaThdothercheThicalThaThufacturiThgfields.HydrogeThalsohasapplicatioThsiThfieldswheredirectelectrificatioThThightrepreseThtaThiThefficieThtorhigh-costpathwaytoThet-zero,suchasiThthefieldsofloThg-haulheavy-dutytruckiThg,TharitiTheshippiThgaThdaviatioTh.IThthesesectors,reThewablehydrogeThaThditsderivatives(suchasgreeThaThThoThia,greeThThethaThol)ThayserveasthelastresortofiThdustrialdecarboThiza-tioThoThceallotheroptioThsareexhausted.rgaeSectorcoupliThgisdefiThedasthecoThThectioThofatleasttwodiffereThtsectorsviasubstitutioThofThoTh-reThew-ableactivitieswithreThewablealterThativestoestablishfullyreThewableeThergysysteThs.5SoTheadvaThtagesofsectorcoupliThgiThcludeiThcreasedflexibility,eTh-haThcedstorage,aThddistributioThopportuThitiestousereThewableeThergy,aswellasreliability.ITheThergytraThsitioTh-relateddiscourse,sectorcoupliThgiThpliesThakiThgreThewablepowerthedefaultforThofeThergyiTheThergycoThsuThiThgsectorswhereverpossible.Becauseweather-depeThdaThtreThewablesareThotalwaysavail-ablewheTheThergyisTheeded,aThdastheTharketshareofwiThdaThdsolariThglobalelectricitygeTheratioThgrowiThgatdoubledigits,6eThergystorageaThdpowerbalaThc-iThgbecoTheThotoThlyiThcreasiThglyproThiTheThttechThicalchalleThgesbutalsobusiThessopportuThities.SectorcoupliThgcouldbeespeciallybeTheficialiThthefollowiThgsceTharios:powercouldbeusedtoheatlargeaThouThtsofwater(power-to-heat,PtH),electrifyiThgtheheatiThgsector.DuriThgperiodsofpeakreThewablepoweroutput,excesselectricitycouldbeutilizedtoproducehydrogeThorsyThtheticgases(power-to-gas,Source:AleksandraMa?achowskaetal.(2022),“HydrogenStorageinGeologicalFormations—ThePotentialofSaltCaverns”Energies2022,15:5038.Source:Johnilliamsetal.,“TheoreticalcapacityforundergroundhydrogenstorageinUKsaltcaverns,”BritishGeologicalSurve,accessedon10January2022athttps://ukccsrc.ac.uk/wp-content/uploads/2020/05/John-illiams_CCS-and-Hydrogen.pdf.Caledonia.C.rappetal.,“Sectorcouplingandbusinessmodelstowardssustainability:Thecaseofthehydrogenvehicleindustr,”March2022.Reference:JoelJaege,“ExplainingtheExponentialGrowthofRenewableEnerg,”orldResourcesInstitute,September2021.Figure3.SectorcouplingviarenewablehydrogenPtG).ThegasescaThtheThbeuseddirectlytoproduceelectricityaThdheatiThtiThesoflowreThewableout-put,orasareduciThgageThtorfeedstockforiThdustrialsectorssuchassteelThakiThgaThdaThThoThiaThaThufac-turiThg.AThiThdirectapplicatioThoftheabovegasesistofurtherprocesstheThtovarioustypesofelectro-fuels(e-fuels)foraviatioTh,TharitiTheshippiThg,aThdloThg-haulheavy-dutytruckiThg.EspeciallyiThEurope,eTh-ergycoThversioThpathwaysthatutilizeelectricityasthepriTharyiThputtoproducevariouse-fuels,eThergyservices,aThdcheThicalsareofteThcategorizedasPow-er-to-X(PtX),withtypicalproductsasbelow:HydrogeThE-aThThoThia

E-ThethaTholE-gasoliTheE-LPG(liquifiedpetroleuThgas)E-jetfuelE-dieselITh2021,reThewablesaccouThtfor30%ofChiTha’spowergeTheratioTh,aThdChiThaplaThstoiThcreasethisto33%by2025.ThoughChiTha’s14thFYPtargetsforreThewablesarewidelycoThsideredcoThservative,thegrowiThgshareofreThewablesiThChiTha’spowerThixeThablesreThewablehydrogeThserveasaTheThergycarriertosuppleTheThtiThgelectricityiThsectorcoupliThgaThdThet-zerodecarboTh-izatioTh,especiallyiThtraThsportaThdeThergy-iThteThsiveheavyiThdustry.Carbonintensityofhydrogentobereducedviarenewables-poweredwaterelectrolysisAllthecarboThabateTheThtbeThefitsrelatedtoreThew-ablehydrogeTharebasedoThthepreThisethatitispro-ducedviaelectrolysiswithreThewables.BycoThparisoTh,CO2eThissioThsdischargedfroThChiTha’ssizablefossilfuel-basedhydrogeThproductioThroutesaresigThifi-caThtlyhigher(Figure3).Therefore,replaciThgfossilfuel-basedhydrogeThwithreThewablehydrogeThiThatiThelyfashioThiscrucialtoeffortstoreduceChiTha’siThdustrialeThissioThs.

ToavoiduThderThiThiThgitsdualcarboThgoalsaThdlock-iThgiTheThissioThs,ChiThaTheedstoeThsurethatgreeThfieldhydrogeThcapacityadditioThsarebasedoThreThewables.However,ChiThacurreThtlylackscoThcretesupportiThgpolicies.EveThthecheThicalsectorlacksarequireTheThtthatThewcapacitytobebasedoThlow-carboThroutes.ThoughreThewablehydrogeThhasyettoreachcostpar-itywithcoal-basedhydrogeTh,itscoThpetitiveThessisexpectedtoiThproveovertiThe,especiallyoThceChiTha’sThatioThalcarboTheThissioThstradiThgscheTheiseThlargedbeyoThdthepowersector,withthecheThicalsectorlikelyaThoThgtheThextsectorstofacecarboThpriciThg.ForcoThpaThiesaloThgthehydrogeThsupplychaiThtoavoidstraThdedassetsaThdlocked-iThiThvestTheTht,pro-activeplaThThiThgaThdpreparatioThfortheforthcoThiThggreeThtraThsitioThisThecessary.Figure4.CO2intensityofhydrogenproductioninChina(kgCO2e/kgH2)0 6 555O2emissioThs(kgCOe/kgH)0Coal-firedpower lh Naturalgs HydrogeThproductioThsourceSource:ChinaHydrogenandFuelCellIndustryHandbook,2020RenewableRenewablehydrogeninChinaIThSepteThber2021,theChiThaHydrogeThAlliaThceaThdtheRockyMouThtaiThIThstitute(RMI)joiThtlylauThchedtheReThewableHydrogeTh100IThitiative,settiThgaThaThbitioThofbuildiThg100gigawatts(GW)ofiThstalledreThewablehydrogeThproductioThcapacityacrossChiThaby2030.Supportedbypolicy,state-owThedeThterprises

(SOEs),privateChiThesecoThpaThies,aThdiThterThatioThalcoThpaThiesiThChiThaareallexpectedtotakeaThactivepartiThreThewablehydrogeThproductioTh.However,aThajorquestioThreThaiThsofhowtheregulatoryfraThe-workThightsupportthistraThsitioTh.ThigThigiaiThtsThii1poject2–5pojectsMoethaTh5pojectsennnhIThterThsofgeography,asofJuly2022,therewere50reThewablehydrogeThproductioThprojectsareuThder-wayacrossChiTha,coThceThtratedThaiThlyiThNorthChiTha.(Forfurtherdetail,seeAThThexA:AlistofreThewablehydrogeThprojectsiThChiTha.)IThTherMoThgoliaaThdHebeileadotherproviThcessofar,thoughthedriversiTheachproviThcediffer.AsChiTha’ssecoThdlargestcoalproducer,aThdasaproviThcewitheThorThouscleaTheThergyresources,IThTherMoThgoliahasloThgplaThThedtofosterareThewablehy-drogeThsupplychaiTh.TheproviThcehasChiTha’slargestiThstalledwiThdcapacity(39.9GW),aThdthehighest

solareThergypoteThtial,aswellaspossessiThgabuTh-daThtby-producthydrogeThproductioTh.WuhaiiThIThTherMoThgoliabecaThethefirstChiTheseThuThicipalgoverTh-TheThttoreleasea14thFYPforhydrogeThdevelopTheTht.StartiThgfroThutiliziThgby-producthydrogeThfroThcoalcheThicalsaThdchlor-alkaliThaThufacturiThg,WuhaiaiThstoestablishthefirsthydrogeTh-basedsteel-Thak-iThgzoTheiThChiThaby2025.IThApril2021,itsOrdosCitypublishedaThree-YearActioThPlaThforHydrogeThDevelopTheTht,prioritiziThgdeployTheThtofseveThre-ThewablehydrogeThproductioThprojects,withaggregatecapacityat42.3kt/year.IThJuly2021,theproviThcialeThergybureaureleasedadrafthydrogeThpolicyforpubliccoThsultatioTh,tar-getiThg500kt/yearofreThewablehydrogeThproductioThcapacityaThdcoThThercializatioThofhydrogeTh-basedsteelThakiThgaThdcheThicalThaThufacturiThgby2025.IThMarch2022,IThTherMoThgolia’s14thFYPoThEThergyaThdOpiThioThsoThProThotiThgtheHigh-QualityDevelopTheThtoftheHydrogeThIThdustryreiteratedtheabovetargetsoThreThewablehydrogeThproductioTh,by-producthy-drogeThutilizatioThaThdhydrogeTh-basedeThergystor-age.IThadditioThtotheprojectslistediThAThThexA,13otherprojectsareuThderdevelopTheTht.ForHebeiproviThce,alltheThiTheexistiThgprojectsarelocatediThZhaThgjiakou,acityiThtheThorthwestoftheproviThcewherewiThdeThergyresourcesareabuThdaTht.180kiloThetresawayfroThBeijiThgaThdsiteofwiTh-tersportsveThues,ZhaThgjiakoutakesadvaThtageofitsproxiThitytoBeijiThgaThditspositioThasoTheofthethreecoThpetitioThzoThesforthe2022BeijiThgWiThterOlyThpicGaThes.ReThewablehydrogeThcoThtributedtoazero-carboThOlyThpicGaThesasthepriTharyfuelfordedicatedbuses.ThepreparatioThofreThewablehydro-geThprojectsiThZhaThgjiakoucoThTheThcedasearlyas2016withstroThgsupportfroThthelocalgoverThTheTht,state-owThedeThterprises(SOEs)aThdThultiThatioThalcoThpaThies.AThoThgChiTha’sthereThewablehydrogeThproduc-tioThdeThoThstratioThprojects,fourareoperatioThal.ThelargestisBaofeThgEThergy’sreThewablehydrogeThprojectiThNiThgxiaproviThce.With200MWsolarPVcoThThissioThediThApril2021tofeed30MWalkaliTheelectrolysersiThPhaseOThe,theprojecthasaThaThThualreThewablehydrogeThoutputofabout240ThillioThTh3withautilizatioThrateat46%.ThehydrogeThfeedsBaofeThg’scoalcheThicalfacilitiesforolefiThproduc-tioTh,reduciThgcoalcoThsuThptioThbyabout320ktperyear,ortheequival

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論