版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年云南省保山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
2.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx
3.
4.方程x2+2y2-z2=0表示的二次曲面是()
A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面
5.
6.函數(shù)y=sinx在區(qū)間[0,n]上滿(mǎn)足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
7.A.0B.1C.∞D(zhuǎn).不存在但不是∞
8.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
9.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
10.
11.
12.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階無(wú)窮小,但不是等價(jià)無(wú)窮小D.低階無(wú)窮小13.級(jí)數(shù)(k為非零正常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)14.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,415.當(dāng)x→0時(shí),x2是2x的A.A.低階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.高階無(wú)窮小
16.
17.
18.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx19.()。A.
B.
C.
D.
20.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合
21.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線(xiàn)y=f(x)在(a,b)內(nèi)().
A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸22.
23.
24.
25.()。A.e-2
B.e-2/3
C.e2/3
D.e2
26.A.0B.2C.2f(-1)D.2f(1)
27.
28.設(shè)x是f(x)的一個(gè)原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))
29.
30.
31.A.A.
B.
C.
D.
32.
33.
34.曲線(xiàn)y=x2+5x+4在點(diǎn)(-1,0)處切線(xiàn)的斜率為()A.A.2B.-2C.3D.-3
35.
36.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
37.
A.0
B.
C.1
D.
38.
A.
B.1
C.2
D.+∞
39.
40.A.A.
B.
C.
D.
41.下面選項(xiàng)中,不屬于牛頓動(dòng)力學(xué)基礎(chǔ)中的定律的是()。
A.慣性定律:無(wú)外力作用時(shí),質(zhì)點(diǎn)將保持原來(lái)的運(yùn)動(dòng)狀態(tài)(靜止或勻速直線(xiàn)運(yùn)動(dòng)狀態(tài))
B.運(yùn)動(dòng)定律:質(zhì)點(diǎn)因受外力作用而產(chǎn)生的加速度,其方向與力的方向相同,大小與力的大小成正比
C.作用與反作用定律:兩個(gè)物體問(wèn)的作用力,總是大小相等,方向相反,作用線(xiàn)重合,并分別作用在這兩個(gè)物體上
D.剛化定律:變形體在某一力系作用下,處于平衡狀態(tài)時(shí),若假想將其剛化為剛體,則其平衡狀態(tài)保持不變
42.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
43.
A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在44.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
45.
46.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
47.
48.
49.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
50.
二、填空題(20題)51.
52.
53.
54.
55.
56.已知平面π:2x+y一3z+2=0,則過(guò)原點(diǎn)且與π垂直的直線(xiàn)方程為_(kāi)_______.57.方程cosxsinydx+sinxcosydy=0的通解為_(kāi)__________.58.59.
60.
61.
62.63.設(shè),則f'(x)=______.
64.
65.
66.
67.
68.
69.設(shè)函數(shù)y=x2lnx,則y=__________.
70.三、計(jì)算題(20題)71.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
72.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.73.證明:
74.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
75.求微分方程y"-4y'+4y=e-2x的通解.
76.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.77.78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.81.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).82.求微分方程的通解.83.
84.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
85.
86.
87.
88.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).89.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.90.
四、解答題(10題)91.
92.
93.
94.95.設(shè)函數(shù)y=sin(2x-1),求y'。96.用洛必達(dá)法則求極限:97.98.
99.
100.五、高等數(shù)學(xué)(0題)101.求極限
六、解答題(0題)102.
參考答案
1.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
2.B
3.D
4.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。
5.D
6.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿(mǎn)足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時(shí),cosξ=0,因此選C。
7.D本題考查了函數(shù)的極限的知識(shí)點(diǎn)。
8.B
9.B
10.D
11.A
12.C本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無(wú)窮小,但不是等價(jià)無(wú)窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小盧與無(wú)窮小α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
13.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性.
由于收斂,可知所給級(jí)數(shù)絕對(duì)收斂.
14.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
15.D
16.D
17.A
18.A
19.D
20.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
21.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線(xiàn)的凹凸性.
由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線(xiàn)y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.
22.B
23.A
24.B
25.B
26.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
27.C解析:
28.Cx為f(x)的一個(gè)原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
29.A
30.C
31.D
32.D解析:
33.D
34.C點(diǎn)(-1,0)在曲線(xiàn)y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線(xiàn)y=x2+5x+4在點(diǎn)(-1,0)處切線(xiàn)的斜率為3,所以選C.
35.D
36.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
37.A
38.C
39.A
40.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
可知應(yīng)選A.
41.D
42.D
43.B
44.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
45.A解析:
46.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
47.C
48.B
49.B
50.B
51.
52.0
53.[*]
54.本題考查了函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
55.7
56.
本題考查的知識(shí)點(diǎn)為直線(xiàn)方程和直線(xiàn)與平面的關(guān)系.
由于平面π與直線(xiàn)1垂直,則直線(xiàn)的方向向量s必定平行于平面的法向量n,因此可以取
57.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).
由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.58.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。
59.
60.
61.62.1
63.本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
64.y=-e-x+C65.0.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給冪級(jí)數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.
66.1/21/2解析:
67.11解析:
68.
69.70.2x+3y.
本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
71.
72.
73.
74.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
75.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
76.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智能小區(qū)門(mén)窗定制與物業(yè)智能化運(yùn)營(yíng)合同3篇
- 2025年消防設(shè)備設(shè)施檢測(cè)與總承包合同
- 二零二五版農(nóng)產(chǎn)品出口合同食品安全標(biāo)準(zhǔn)規(guī)定3篇
- 二零二五年度餐飲業(yè)節(jié)能改造工程合同6篇
- 二零二四年度專(zhuān)業(yè)技術(shù)人才引進(jìn)與委托培養(yǎng)合同3篇
- 2025年度零擔(dān)運(yùn)輸合同電子簽章實(shí)施規(guī)范4篇
- 2024虛擬現(xiàn)實(shí)旅游體驗(yàn)應(yīng)用開(kāi)發(fā)合同
- 2024適用農(nóng)村小額信貸的民間借貸借款合同3篇
- 2025年安徽省住房租賃市場(chǎng)租賃房屋裝修合同3篇
- 2024珠海投影設(shè)備租賃合同
- 2019級(jí)水電站動(dòng)力設(shè)備專(zhuān)業(yè)三年制人才培養(yǎng)方案
- 室內(nèi)裝飾裝修施工組織設(shè)計(jì)方案
- 洗浴中心活動(dòng)方案
- 送電線(xiàn)路工程施工流程及組織措施
- 肝素誘導(dǎo)的血小板減少癥培訓(xùn)課件
- 韓國(guó)文化特征課件
- 抖音認(rèn)證承諾函
- 清潔劑知識(shí)培訓(xùn)課件
- 新技術(shù)知識(shí)及軍事應(yīng)用教案
- 高等數(shù)學(xué)(第二版)
- 肺炎喘嗽的中醫(yī)護(hù)理常規(guī)
評(píng)論
0/150
提交評(píng)論