2023學(xué)年內(nèi)蒙古赤峰市翁牛特旗烏丹六中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第1頁
2023學(xué)年內(nèi)蒙古赤峰市翁牛特旗烏丹六中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第2頁
2023學(xué)年內(nèi)蒙古赤峰市翁牛特旗烏丹六中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第3頁
2023學(xué)年內(nèi)蒙古赤峰市翁牛特旗烏丹六中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第4頁
2023學(xué)年內(nèi)蒙古赤峰市翁牛特旗烏丹六中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個2.某車庫出口安裝的欄桿如圖所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為()(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.3.在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象可能是()A. B. C. D.4.如圖,∠1=∠2,則下列各式不能說明△ABC∽△ADE的是()A.∠D=∠B B.∠E=∠C C. D.5.已知點,,是拋物線上的三點,則a,b,c的大小關(guān)系為()A. B. C. D.6.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°7.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是()A.4 B.2 C. D.8.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關(guān)系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法判斷9.已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當(dāng)直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣210.如圖,在某監(jiān)測點B處望見一艘正在作業(yè)的漁船在南偏西15°方向的A處,若漁船沿北偏西75°方向以40海里/小時的速度航行,航行半小時后到達(dá)C處,在C處觀測到B在C的北偏東60°方向上,則B、C之間的距離為().A.20海里 B.10海里 C.20海里 D.30海里二、填空題(每小題3分,共24分)11.在Rt△ABC中,∠C=90°,如果tan∠A=,那么cos∠B=_____.12.如圖,每個小正方形的邊長都為1,點A、B、C都在小正方形的頂點上,則∠ABC的正切值為_____.13.在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.以頂點都是格點的正方形ABCD的邊為斜邊,向內(nèi)作四個全等的直角三角形,使四個直角頂點E,F(xiàn),G,H都是格點,且四邊形EFGH為正方形,我們把這樣的圖形稱為格點弦圖.例如,在如圖1所示的格點弦圖中,正方形ABCD的邊長為,此時正方形EFGH的而積為1.問:當(dāng)格點弦圖中的正方形ABCD的邊長為時,正方形EFGH的面積的所有可能值是_____(不包括1).14.做任意拋擲一只紙杯的重復(fù)實驗,部分?jǐn)?shù)據(jù)如下表拋擲次數(shù)50100500800150030005000杯口朝上的頻率0.10.150.20.210.220.220.22根據(jù)上表,可估計任意拋擲一只紙杯,杯口朝上的概率約為__________.15.如圖,Rt△ABC中,∠ACB=90°,AC=BC=4,D為線段AC上一動點,連接BD,過點C作CH⊥BD于H,連接AH,則AH的最小值為_____.16.已知⊙O的直徑AB=20,弦CD⊥AB于點E,且CD=16,則AE的長為_______.17.如圖,已知梯形ABCO的底邊AO在軸上,,AB⊥AO,過點C的雙曲線交OB于D,且,若△OBC的面積等于3,則k的值為__________.18.圓錐的母線長是5cm,底面半徑長是3cm,它的側(cè)面展開圖的圓心角是____.三、解答題(共66分)19.(10分)已知,求的值.20.(6分)某校在向貧困地區(qū)捐書活動中全體師生積極捐書.為了解所捐書籍的種類,某同學(xué)對部分書籍進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下面問題:(1)本次抽樣調(diào)查的書籍有多少本?請通過計算補全條形統(tǒng)計圖;(2)求出圖中表示科普類書籍的扇形圓心角度數(shù);(3)本次活動師生共捐書本,請估計有多少本文學(xué)類書籍?21.(6分)為了“城市更美好、人民更幸?!?,我市開展“三城聯(lián)創(chuàng)”活動,環(huán)衛(wèi)部門要求垃圾按三類分別裝袋、投放,其中類指廢電池,過期藥品等有毒垃圾,類指剩余食品等廚余垃圾,類指塑料、廢紙等可回收垃圾,甲、乙兩人各投放一袋垃圾.(1)甲投放的垃圾恰好是類的概率是;(2)用樹狀圖或表格求甲、乙兩人投放的垃圾是不同類別的概率.22.(8分)如圖,直線y=1x+1與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=1.(1)求H點的坐標(biāo)及k的值;(1)點P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標(biāo);(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,點Q(m,0)是x軸上的動點,當(dāng)△MNQ的面積為3時,請求出所有滿足條件的m的值.23.(8分)我市某旅行社為吸引我市市民組團(tuán)去長白山風(fēng)景區(qū)旅游,推出了如下的收費標(biāo)準(zhǔn):如果人數(shù)不超過25人,人均旅游費用為800元;如果人數(shù)超過25人,每增加1人,人均旅游費用降低20元,但人均旅游費用不得低于650元,某單位組織員工去長白山風(fēng)景區(qū)旅游,共支付給旅行社旅游費用21000元,請問該單位這次共有多少員工去長白山風(fēng)景區(qū)旅游?24.(8分)某中學(xué)開展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.(1)根據(jù)圖示填寫下表:班級中位數(shù)(分)眾數(shù)(分)九(1)85九(2)100(2)通過計算得知九(2)班的平均成績?yōu)?5分,請計算九(1)班的平均成績.(3)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好.(4)已知九(1)班復(fù)賽成績的方差是70,請計算九(2)班的復(fù)賽成績的方差,并說明哪個班的成績比較穩(wěn)定?25.(10分)計算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos245°+sin60°tan45°+sin1.26.(10分)先化簡,再求值.,請從一元二次方程x2+2x-3=0的兩個根中選擇一個你喜歡的求值.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題解析:如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有

,即b=,∴tan∠CAD=.故④不正確;故選B.【點睛】本題主要考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.解題時注意:相似三角形的對應(yīng)邊成比例.2、A【分析】延長BA、FE,交于點D,根據(jù)AB⊥BC,EF∥BC知∠ADE=90°,由∠AEF=143°知∠AED=37°,根據(jù)sin∠AED,AE=1.2米求出AD的長,繼而可得BD的值,從而得出答案.【詳解】如圖,延長BA、FE,交于點D.∵AB⊥BC,EF∥BC,∴BD⊥DF,即∠ADE=90°.∵∠AEF=143°,∴∠AED=37°.在Rt△ADE中,∵sin∠AED,AE=1.2米,∴AD=AE?sin∠AED=1.2×sin37°≈0.72(米),則BD=AB+AD=1.18+0.72=1.9(米).故選:A.【點睛】本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是結(jié)合題意構(gòu)建直角三角形,并熟練掌握正弦函數(shù)的概念.3、C【解析】試題解析:A、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線y=ax2+bx來說,對稱軸x=﹣<0,應(yīng)在y軸的左側(cè),故不合題意,圖形錯誤.B、對于直線y=bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線y=ax2+bx來說,圖象應(yīng)開口向下,故不合題意,圖形錯誤.C、對于直線y=bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線y=ax2+bx來說,圖象開口向下,對稱軸x=﹣位于y軸的右側(cè),故符合題意,D、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線y=ax2+bx來說,圖象開口向下,a<0,故不合題意,圖形錯誤.故選C.考點:二次函數(shù)的圖象;一次函數(shù)的圖象.4、D【分析】根據(jù)∠1=∠2,可知∠DAE=∠BAC,因此只要再找一組角或一組對應(yīng)邊成比例即可.【詳解】解:A和B符合有兩組角對應(yīng)相等的兩個三角形相似;C、符合兩組對應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個三角形相似;D、對應(yīng)邊成比例但無法證明其夾角相等,故其不能推出兩三角形相似.故選D.【點睛】考查了相似三角形的判定:①有兩個對應(yīng)角相等的三角形相似;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.5、D【分析】將A,B,C三點坐標(biāo)分別代入拋物線,然后化簡計算即可.【詳解】解:∵點,,是拋物線上的三點,∴,,.∴故選:D.【點睛】本題考查二次函數(shù)圖象上點的坐標(biāo),將點坐標(biāo)分別代入關(guān)系式,正確運算,求出a,b,c是解題的關(guān)鍵.6、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.7、C【分析】根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故選C.【點睛】本題考查平行線分線段成比例定理.解題的關(guān)鍵是注意掌握各比例線段的對應(yīng)關(guān)系.8、B【解析】比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關(guān)系,記住:點與圓的位置關(guān)系有3種設(shè)的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內(nèi).9、D【解析】如圖,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折疊的性質(zhì)求出折疊部分的解析式為y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直線?y=﹣x+m經(jīng)過點A(﹣2,0)時m的值和當(dāng)直線y=﹣x+m與拋物線y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共點時m的值,從而得到當(dāng)直線y=﹣x+m與新圖象有4個交點時,m的取值范圍.【詳解】如圖,當(dāng)y=0時,﹣x2+x+6=0,解得x1=﹣2,x2=3,則A(﹣2,0),B(3,0),將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方的部分圖象的解析式為y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),當(dāng)直線y=﹣x+m經(jīng)過點A(﹣2,0)時,2+m=0,解得m=﹣2;當(dāng)直線y=﹣x+m與拋物線y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共點時,方程x2﹣x﹣6=﹣x+m有相等的實數(shù)解,解得m=﹣6,所以當(dāng)直線y=﹣x+m與新圖象有4個交點時,m的取值范圍為﹣6<m<﹣2,故選D.【點睛】本題考查了拋物線與幾何變換,拋物線與x軸的交點等,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解決此類問題常用的方法.10、C【分析】如圖,根據(jù)題意易求△ABC是等腰直角三角形,通過解該直角三角形來求BC的長度.【詳解】如圖,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故選C.考點:解直角三角形的應(yīng)用-方向角問題.二、填空題(每小題3分,共24分)11、【分析】直接利用特殊角的三角函數(shù)值得出∠A=30°,進(jìn)而得出∠B的度數(shù),進(jìn)而得出答案.【詳解】∵tan∠A=,∴∠A=30°,∵∠C=90°,∴∠B=180°﹣30°﹣90°=60°,∴cos∠B=.故答案為:.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確理解三角函數(shù)的計算公式是解題關(guān)鍵.12、1【解析】根據(jù)勾股定理求出△ABC的各個邊的長度,根據(jù)勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【詳解】如圖:長方形AEFM,連接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【點睛】本題考查了解直角三角形和勾股定理及逆定理等知識點,能求出∠ACB=90°是解此題的關(guān)鍵.13、9或2或3.【解析】分析:共有三種情況:①當(dāng)DG=,CG=2時,滿足DG2+CG2=CD2,此時HG=,可得正方形EFGH的面積為2;②當(dāng)DG=8,CG=1時,滿足DG2+CG2=CD2,此時HG=7,可得正方形EFGH的面積為3;③當(dāng)DG=7,CG=4時,滿足DG2+CG2=CD2,此時HG=3,可得正方形EFGH的面積為9.詳解:①當(dāng)DG=,CG=2時,滿足DG2+CG2=CD2,此時HG=,可得正方形EFGH的面積為2.②當(dāng)DG=8,CG=1時,滿足DG2+CG2=CD2,此時HG=7,可得正方形EFGH的面積為3;③當(dāng)DG=7,CG=4時,滿足DG2+CG2=CD2,此時HG=3,可得正方形EFGH的面積為9.故答案為9或2或3.點睛:本題考查作圖-應(yīng)用與設(shè)計、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.14、0.1【解析】觀察表格的數(shù)據(jù)可以得到杯口朝上的頻率,然后用頻率估計概率即可求解.【詳解】解:依題意得杯口朝上頻率逐漸穩(wěn)定在0.1左右,

估計任意拋擲一只紙杯,杯口朝上的概率約為0.1.

故答案為:0.1.【點睛】本題考查利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.15、2﹣2【分析】取BC中點G,連接HG,AG,根據(jù)直角三角形的性質(zhì)可得HG=CG=BG=BC=2,根據(jù)勾股定理可求AG=2,由三角形的三邊關(guān)系可得AH≥AG﹣HG,當(dāng)點H在線段AG上時,可求AH的最小值.【詳解】解:如圖,取BC中點G,連接HG,AG,∵CH⊥DB,點G是BC中點∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即當(dāng)點H在線段AG上時,AH最小值為2﹣2,故答案為:2﹣2【點睛】本題考查了動點問題,解決本題的關(guān)鍵是熟練掌握直角三角形中勾股定理關(guān)系式.16、16或1【分析】結(jié)合垂徑定理和勾股定理,在Rt△OCE中,求得OE的長,則AE=OA+OE或AE=OA-OE,據(jù)此即可求解.【詳解】解:如圖,連接OC,∵⊙O的直徑AB=20∴OC=OA=OB=10∵弦CD⊥AB于點E∴CE=CD=8,在Rt△OCE中,OE=則AE=OA+OE=10+6=16,如圖:同理,此時AE=OA-OE=10-6=1,故AE的長是16或1.【點睛】本題考查勾股定理和垂徑定理的應(yīng)用,根據(jù)題意做出圖形是本題的解題關(guān)鍵,注意分類討論.17、【分析】設(shè)C(x,y),BC=a.過D點作DE⊥OA于E點.根據(jù)DE∥AB得比例線段表示點D坐標(biāo);根據(jù)△OBC的面積等于3得關(guān)系式,列方程組求解.【詳解】設(shè)C(x,y),BC=a.則AB=y,OA=x+a.過D點作DE⊥OA于E點.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比為OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D點在反比例函數(shù)的圖象上,且D((x+a),y),∴y?(x+a)=k,即xy+ya=9k,∵C點在反比例函數(shù)的圖象上,則xy=k,∴ya=8k.∵△OBC的面積等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案為:.18、216°.【詳解】圓錐的底面周長為2π×3=6π(cm),設(shè)圓錐側(cè)面展開圖的圓心角是n°,則=6π,解得n=216.故答案為216°.【點睛】本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.三、解答題(共66分)19、9【分析】根據(jù),用表示、、,將它們代入原式,即可得到答案.【詳解】解:設(shè),則x=2k,y=3k,z=4k∴=.【點睛】本題考查了比例的性質(zhì),將三個未知數(shù)用一個未知數(shù)表示出來是解題的關(guān)鍵.20、(1)本次抽樣調(diào)查的書籍有本;作圖見解析(2)(3)估計有本文學(xué)類書籍【分析】(1)根據(jù)藝術(shù)類圖書8本占20%解答;(2)根據(jù)科普類書籍占總數(shù)的,即可解答;(3)利用樣本估計總體.【詳解】(1)8÷20%=40(本),40-8-14-12=6(本),答:本次抽樣調(diào)查的書籍有40本.補圖如圖所示:(2),答:圖1中表示科普類書籍的扇形圓心角度數(shù)為108°.(3)(本),答:估計有700本文學(xué)類書籍.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,兩圖結(jié)合是解題的關(guān)鍵.21、(1);(2).【分析】(1)一共有3種等可能的結(jié)果,恰為類的概率是(2)根據(jù)題意列出所有等可能的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)(2)甲乙ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,甲、乙兩人投放的垃圾共有9種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中甲、乙投放的垃圾恰是不同類別的有6種,即(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),∴(甲、乙投放的垃圾是不同類別).【點睛】本題考查了列表法或樹狀圖以及概率的求法.22、(1)k=4;(1)點P的坐標(biāo)為(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解析】(1)先求出OA=1,結(jié)合tan∠AHO=1可得OH的長,即可得知點M的橫坐標(biāo),代入直線解析式可得點M坐標(biāo),代入反比例解析式可得k的值;

(1)分AM=AP和AM=PM兩種情況分別求解可得;

(2)先求出點N(4,1),延長MN交x軸于點C,待定系數(shù)法求出直線MN解析式為y=-x+3.據(jù)此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,再進(jìn)一步求解可得.【詳解】(1)由y=1x+1可知A(0,1),即OA=1,∵tan∠AHO=1,∴OH=1,∴H(1,0),∵M(jìn)H⊥x軸,∴點M的橫坐標(biāo)為1,∵點M在直線y=1x+1上,∴點M的縱坐標(biāo)為4,即M(1,4),∵點M在y=上,∴k=1×4=4;(1)①當(dāng)AM=AP時,∵A(0,1),M(1,4),∴AM=,則AP=AM=,∴此時點P的坐標(biāo)為(0,1﹣)或(0,1+);②若AM=PM時,設(shè)P(0,y),則PM=,∴=,解得y=1(舍)或y=6,此時點P的坐標(biāo)為(0,6),綜上所述,點P的坐標(biāo)為(0,6)或(0,1+),或(0,1﹣);(2)∵點N(a,1)在反比例函數(shù)y=(x>0)圖象上,∴a=4,∴點N(4,1),延長MN交x軸于點C,設(shè)直線MN的解析式為y=mx+n,則有解得,∴直線MN的解析式為y=﹣x+3.∵點C是直線y=﹣x+3與x軸的交點,∴點C的坐標(biāo)為(3,0),OC=3,∵S△MNQ=2,∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=2,∴QC=1,∵C(3,0),Q(m,0),∴|m﹣3|=1,∴m=7或2,故答案為7或2.【點睛】本題是反比例函數(shù)綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式、等腰三角形的判定與性質(zhì)、兩點之間的距離公式及三角形的面積計算.23、共有30名員工去旅游.【分析】利用總價=單價×數(shù)量求出人數(shù)時25時的總費用,由該費用小于21000可得出去旅游的人數(shù)多于25人,設(shè)該單位去旅游人數(shù)為x人,則人均費用為800﹣20(x﹣25)元,根據(jù)總價=單價×數(shù)量,即可得出關(guān)于x的一元二次方程,解之即可得出x的值,再代入人均費用中去驗證,取使人均費用大于650的值即可得出結(jié)論.【詳解】解:∵800×25=20000<21000,∴人數(shù)超過25人.設(shè)共有x名員工去旅游,則人均費用為800﹣20(x﹣25)元,依題意,得:x[800﹣20(x﹣25)]=21000,解得:x1=35,x2=30,∵當(dāng)x=30時,800﹣20×(30﹣25)=700>65

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論