2022-2023學(xué)年廣東省中山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2022-2023學(xué)年廣東省中山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2022-2023學(xué)年廣東省中山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2022-2023學(xué)年廣東省中山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2022-2023學(xué)年廣東省中山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年廣東省中山市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散

2.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)

3.當(dāng)x→0時(shí),x+x2+x3+x4為x的

A.等價(jià)無窮小B.2階無窮小C.3階無窮小D.4階無窮小

4.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

5.

6.

7.

8.

9.A.A.1/2B.1C.2D.e

10.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

11.

12.

A.2x+1B.2xy+1C.x2+1D.2xy

13.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

14.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

15.

16.

17.A.6YB.6XYC.3XD.3X^2

18.

19.()A.A.1/2B.1C.2D.e

20.A.f(2x)

B.2f(x)

C.f(-2x)

D.-2f(x)

二、填空題(20題)21.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為______.22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.36.cosx為f(x)的一個(gè)原函數(shù),則f(x)=______.

37.

38.

39.ylnxdx+xlnydy=0的通解是______.

40.設(shè).y=e-3x,則y'________。

三、計(jì)算題(20題)41.

42.43.求微分方程的通解.44.45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

46.

47.求曲線在點(diǎn)(1,3)處的切線方程.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).49.

50.求微分方程y"-4y'+4y=e-2x的通解.

51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

52.

53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.證明:56.

57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.將f(x)=e-2X展開為x的冪級(jí)數(shù).59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則四、解答題(10題)61.62.

63.

64.

65.求∫arctanxdx。

66.67.

68.

69.70.五、高等數(shù)學(xué)(0題)71.求y=ln(x2+1)的凹凸區(qū)間,拐點(diǎn)。

六、解答題(0題)72.

參考答案

1.D

2.D解析:

3.A本題考查了等價(jià)無窮小的知識(shí)點(diǎn)。

4.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

5.B

6.A解析:

7.D

8.D

9.C

10.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.

11.C

12.B

13.C

14.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

15.A

16.B解析:

17.D

18.C

19.C

20.A由可變上限積分求導(dǎo)公式可知因此選A.21.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為

y-f(x0)=f'(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為

y-1=0.

22.

23.1/21/2解析:

24.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

25.3x+y-5z+1=03x+y-5z+1=0解析:

26.

27.e

28.

29.1/21/2解析:

30.

31.x=-3

32.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),

33.7

34.35.

本題考查的知識(shí)點(diǎn)為不定積分計(jì)算.

36.-sinx本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于cosx為f(x)的原函數(shù),可知

f(x)=(cosx)'=-sinx.

37.<0

38.2x-4y+8z-7=0

39.(lnx)2+(lny)2=C

40.-3e-3x

41.

42.

43.

44.

45.

46.

47.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

48.

列表:

說明

49.

50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

51.函數(shù)的定義域?yàn)?/p>

注意

52.53.由二重積分物理意義知

54.

55.

56.由一階線性微分方程通解公式有

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.

60.由等價(jià)無窮小量的定義可知61.本題考查的知識(shí)點(diǎn)為將函數(shù)展開為x的冪級(jí)數(shù).

【解題指導(dǎo)】

將函數(shù)展開為x的冪級(jí)數(shù)通常利用間接法.先將f(x)與標(biāo)準(zhǔn)展開式中的函數(shù)對(duì)照,以便確定使用相應(yīng)的公式.如果f(x)可以經(jīng)過恒等變形變?yōu)闃?biāo)準(zhǔn)展開式中函數(shù)的和、差形式,則可以先變形.

62.

63.

64.

65.

66.

67.

68.69.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.

積分區(qū)域D如圖2—1所示.

解法1利用極坐標(biāo)系.

D可以表示為

解法2利用直角坐標(biāo)系.

如果利用直角坐標(biāo)計(jì)算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意

可以看出,兩種積分次序下的二次積分都可以進(jìn)行計(jì)算,但是若先對(duì)x積分,后對(duì)y積分,將簡便些.

本題中考生出現(xiàn)的較普遍的錯(cuò)誤為,利用極坐標(biāo)將二重積分化為二次積分:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論