課程-金融計(jì)量學(xué)lecture8garch_第1頁
課程-金融計(jì)量學(xué)lecture8garch_第2頁
課程-金融計(jì)量學(xué)lecture8garch_第3頁
課程-金融計(jì)量學(xué)lecture8garch_第4頁
課程-金融計(jì)量學(xué)lecture8garch_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余74頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

GARCHandOtherVolatilityModelsOutline1Introduction2ARCH3GARCH4OtherGARCHfamilymodels5Application:VaR6Realizedvolatilitymodel7Impliedvolatility閱讀: Enders,Ch3Tsay,Ch31IntroductiontovolatilitymodelWhatisvolatility?Volatilityissimplyastatisticalmeasureofdispersionaroundthemean,i.e.,standarddeviationWhyisvolatilitysoimportant?OptionpricingandhedgingDynamichedgeratiosVaRTimeseriesmodelingforforecastandhypothesistestWhyisvolatilitysodifficulttomodel?Haveyoueverobservedvolatility?Thenhowabouttoestimatestdusinghistoricdata?Thenextfigureisthestd’sofS&P500,Russell2000andastockusingtwo-monthdailyreturns.(candoitforyou)ItisalsocalledhistoricvolatilityItisobviousthatvolatilityistime-varying.Anunobservabletime-varyingobject!Nowonderitisdifficulttomodel.Fromthishistoricvolatilityfigure,wecanseethattimevaryingthereareperiodsoftimewherethevolatilityishigh(orlow)anditstaysthatway.ThisiscalledvolatilityclusteringLargeshocksareusuallyfollowedbyanotherlargeshock.volatilitygoesupandthencomesbackdownagain.Youcanclearlyseethereisarangeandthatiscalledmeanreversion.clusteringandmeanrevertingtogetherindicatethatvolatilityislikeastationaryAR(1)processwithpositivecoefficient.Canwejustusethishistoricvolatility?Inallapplications(optionpricing,riskmanagement,etc.),whatweneedisthevolatilityoffuturereturn,ortheexpectedvolatility!Ifvolatilityisconstant,wecanusehistoricvolatilityastheforecastoffuturevolatility.Unfortunately,volatilityistime-varying.Henceweneedmodelsforthefuturevolatilityforecastproblem.Wehavetwoapproaches:Two-stepsapproach:estimatevolatilityinthehistoryfirstandthenmodelitsmovementThemovementmodelisoftenARMAtypesimplemodel.Inindustry,randomwalkmodeliswidelyused,i.e.,today’svolatilityisusedastheforecastoftomorrow’sPros:simpleandintuitive,forexample,tradingoptionisoftencalledtradingvolatilityCons:notheoreticalfoundation.Volatilityestimatingmodelandmovementmodelarenotconsistent.SimilartooutsidemodelhedgingOne-stepapproach:estimateandmodelitsmovementinonemodelThemodelinputisobservableinformationsuchasreturns,themodelistofitthereturns.Volatilityanditsmovementispartofthemodel.Pros:hassolidtheoreticalfoundationCons:notflexible,difficulttoestimate.Beforegotomodeldetails,pleasenotethat:Inmostapplications,volatilityisannualized.Wecangetitbyadjustingthedatafrequency.Butitisn’tthevolatilityfortheyearlyreturn!Forecastvolatility(standarddeviation)orvariance?SinceE(s)=/sqrt(E(s^2)),itisbettertomodelwhateveryouwillneedtoforecastThevolatilityistime-varying,thenthereturnprocess(S&P500,Russell2000)isnotstationary?Notnecessarybecausethevolatilityreportedaboveisanestimatoroftheabsolutevolatility,nottheabsolutevolatilityitself.Wewillseethatconditionallyheteroscedasticity(time-varying)volatilitycangeneratetime-varyingvolatilityestimatorasabove.Infact,theheteroscedasticityincross-sectionaldataisalsoconditional.Wewilldiscusstheone-stepapproachfirst.One-stepapproachestimatesandmodelsvolatility’smovementinonemodel.Themodelinputisobservableinformationsuchasreturns,volatilityispartofthemodel.Hencevolatility,intheory,isafunctionoftheavailableinformation.Stochasticfunctionoftheavailableinformation:SVfamilymodelsMelinoandTurnbull(1990),Harvey,RuizandShephard(1994)Jacquier,PolsonandRossi(1994).“Fixedfunction"oftheavailableinformation:GARCHfamilymodelsAllarebasedonARCHmodelofEngle(1982)RobertF.EnglesharedtheNobelprize(2003)“formethodsofanalyzingeconomictimeserieswithtime-varyingvolatility(ARCH)withCliveW.J.Grangerwhoreceivedtheprize“formethodsofanalyzingeconomictimeserieswithcommontrends(cointegration).”“Fixedfunction"oftheavailableinformation:GARCHfamilymodelsARCHmodelofEngle(1982),GeneralizedARCH(GARCH)modelofBollerslev(1986),GARCH-Mmodels,IGARCHmodelofNelson(1990),ExponentialGARCH(EGARCH)modelofNelson(1991),ThresholdGARCHmodelofZakoian(1994)orGJRmodelofGlosten,Jagannathan,andRunkle(1993),AsymmetricparametricARCH(APARCH)modelsofDing,GrangerandEngle(1994),[TGARCHandGJRmodelsarespecialcasesofAPARCH]2ARCHARCH(AutoregressiveConditionalHeteroscedastic)modelisproposedbyEngle(1982).Itsbasicidea:explicitlymodelthemovementofvolatilityinthemodelofreturnprocess回顧在橫截面模型中,我們?nèi)绾翁幚恚l件)異方差的方法(GLS)我們將用這種方法處理時(shí)間系列模型中的(條件)異方差2ARCH與GLS不同的是,這里方差不是可觀察變量的函數(shù),而是擬合誤差的函數(shù)Ifnosigmapart,wehavethestandardAR(p)processEconomicimplication:ShocksofassetreturnsareNOTseriallycorrelated,butdependent.Thatis,theserialdependenceisnonlinear.Consistentwithempiricalfindingthatstockreturnisnotpredictable,butvolatilityismean-revertingThemeanpartcanbeanyotherprocess(evenwithexogeneousvariable).Ourdiscussionbelowwillfocusonvolatilitypartonly.UnconditionalpropertiesofARCHIfa1>=1,thevolatilityprocesswillbenon-stationaryForARCH(m),thepropertiesabovehold,butformulasarecomplicatedConditionalvolatilityinARCHLikeaMAprocesswhenm>1ItisobviousthatvolatilityistimevaryingFurthermore,wehavevolatilityclusteringSinceerrortermainaboveequationcanberewrittenasproductsofvolatilityandinnovationThispropertycanbeusedastoestimate“historic”volatilityItcanalsobeusedtoforecastfuturevolatilitysincetheexpectedvolatilityoftimetisknownattimet-1Wewilldiscussthevolatilityforecastindetaillater.ButweneedtoknowtheparameterfirstEstimation:MLEForexample:AR(1)-ARCH(1)當(dāng)樣本比較大時(shí),ConditionalMLE沒有什么誤差特別是對(duì)高階ARCH,MLE更復(fù)雜,CMLE更常用。其它的ARCH,包括不同的均值過程,都有類似的likelihood方程對(duì)比較標(biāo)準(zhǔn)的ARCH模型,SAS等軟件有現(xiàn)成的命令ProcedureautoreginSASisaproceduretodealwithautocorrelatedand/orheteroscadasticerrordataone;v=0;lret=0;dotime=-10to500;u=rannor(12346);sigma=0.1+0.3*v*v;v=sqrt(sigma)*u;dreteq=1.2+0.5*lret+v;iftime>0thenoutput;lret=dreteq;end;run;模擬的模型為:dreteq=1.2+0.5lret+vv(t)=se

s2=0.1+0.3v(t-1)^2procautoregdata=one;modeldreteq=lret/garch=(q=2);quit;估計(jì)為:dreteq=1.2348+0.4811lret+vv(t)=se

s2=0.089+0.371v(t-1)^2+0.0v(t-2)^2ARCH模型的均值部分理論上可以是ARMA,即誤差除了有異方差,還可以是自相關(guān)的但procautoreg不能處理。兩種辦法處理自相關(guān):用ARMA-ARCH模型,但用procmodel命令用procautoreg,即均值部分用AR,誤差部分用AR+ARCH這里如果沒有sigma,就是前面初級(jí)計(jì)量經(jīng)濟(jì)學(xué)講的誤差系列相關(guān)模型dataone;v1=0;lret=0;dotime=-10to1000;u=rannor(12346);sigma=0.1+0.3*v1*v1;v=0.5*v1+sqrt(sigma)*u;dreteq=1.2+0.5*lret+v;iftime>0thenoutput;lret=dreteq;end;run;procautoregdata=one;modeldreteq=lret/nlag=1garch=(q=2);quit;估計(jì)的模型應(yīng)該為:dreteq=1.2+0.5lret+vv(t)=0.5v(t-1)+

se

s2=0.1+0.3v(t-1)^2估計(jì)為:dreteq=1.153+0.516lret+vv(t)=0.3984v(t-1)+

se

s2=0.1004+0.3578v(t-1)^2+0.00928v(t-2)^2注意誤差A(yù)R(1)的系數(shù)在SAS中是相反數(shù)BuildinganARCHModelARCHmodelitselfisnotwidelyusedanymore,ageneratedARCH(GARCH)ismuchbetter.WewillleaveittoGARCHpartSimilarly,ForecastingvolatilityusingARCHmodelisalsodiscussedinGARCH3GARCHBasicideaInpracticeweoftentoneedhighorderARCHmodeltofitdataEngle(1982)findsthatUKCPIisARCH(4)ButARCHislikeMA,AhighorderMAcanbeapproximatedbyasimpleARBasicstructure沒有beta是就是ARCH,但加上beta,可以大幅減小sGARCH(1,1)Re-parameterization:ThisisanARMAformforthesquarederrorseriesItisusefultounderstandpropertiesofGARCHmodels,e.g.momentequations,forecasting,etc.UnconditionalpropertiesofGARCHFocusonGARCH(1,1)Unconditionalmeanofvolatility:alpha0/(1-alpha1-beta1)可見其平穩(wěn)性條件,Weaklystationarycondition:FattailsConditionalpropertiesofGARCHTime-varyingvolatilityVolatilityclustersMuchclearthaninARCHmodelbecauseoftheARcomponentsInfact,autocorrelationofsquaredresidualsissimilartotheAR(1)withparameter(alpha1+beta1)Bothalphaandbetageneratevolatilityclustering,whichoneismoreimportant?Alphacapturesthepreviousshock’simpact,andbetacapturesthepreviousvolatility’simpactLargerbetaindicatesthatshockstovolatilitytakealongtimetodieout,sovolatilityismorepersistentLargeralphameansthatvolatilityreactsquiteintenselytothepreviousmarketmovement,sovolatilitytendtobemorespiky.NextfigureshowsthispatternItiscommontoseethatbeta>0.8andalpha<0.2infinancialmarketGARCHmodelestimation:SimilarARCH,MLENeedinitialconditionforbotherrorandvolatilityUnconditionalmeanofvolatility:alpha0/(1-alpha1-beta1)dataone;v=0;lret=0;sigma1=0;dotime=-10to1000;u=rannor(12346);sigma=0.1+0.4*sigma1+0.3*v*v;v=sqrt(sigma)*u;dreteq=1.2+0.5*lret+v;iftime>0thenoutput;lret=dreteq;sigma1=sigma;end;run;procautoregdata=one;modeldreteq=lret/garch=(p=1,q=2);quit;估計(jì)的模型應(yīng)該為:dreteq=1.2+0.5lret+vv(t)=se

s2=0.1+0.3v(t-1)^2+0.4s2(t-1)估計(jì)為:dreteq=1.2037+0.4952lret+vv(t)=se

s2=0.0609+0.3578v(t-1)^2-0.1719v(t-2)^2+0.6248s2(t-1)VolatilityestimateandforecastinGARCHRecursiveDependsoninitialconditionTheerrortermattime0isassumedtobe0orato-be-estimatedparameterthevolatilityattime0isassumedtobesamplevariance,orlong-termvariance,orato-be-estimatedparameterprocautoregdata=one;modeldreteq=lret/garch=(p=1,q=2);Outputout=outcev=vhatr=residual;quit;這里的vhat事實(shí)上是sigma的擬合值比較擬合值與原始值(因?yàn)槭悄M數(shù)據(jù)):vhat--sigma;residual–vVolatilityestimateandforecastinGARCHOut-sample預(yù)測(cè)?SASprocautoregcannotautomaticallygiveitButitiseasytocalculateone-dayaheadvolatilitybytherecursiveformulaafterweobtainparametersestimatedandvolatilityestimateuptodateHowaboutj-day(j>1)aheadvolatilityforecastsincenoobservationsonfutureinnovationa?VolatilityestimateandforecastinGARCHThevolatilityforecastsofarforone-periodreturn’sconditionalvolatility,butinapplications,weoftenneedtheforecastforthenextn-periodreturn’svolatility.Forexample,topriceancalloptionwithn-daystoexpire由這個(gè)公式,我們會(huì)發(fā)現(xiàn),實(shí)證上,不同期回報(bào)的volatility(年化后)會(huì)不一樣。這個(gè)特征也叫波動(dòng)率的期限結(jié)構(gòu)(在BS模型中,它是常數(shù))前面討論的模型估計(jì)/波動(dòng)率預(yù)測(cè)是建立在給定的GARCH模型基礎(chǔ)上,如何BuildinganGARCHModel?我們通過模擬一個(gè)AR(1)-GARCH(1,1)過程的建模來說明dataone;retainseed14500;v1=0;lret=0;sigma1=0;dotime=-10to1000;callrannor(seed1,u);sigma=0.1+0.4*sigma1+0.3*v1*v1;v=sqrt(sigma)*u;dreteq=1.2+0.5*lret+v;iftime>0thenoutput;lret=dreteq;sigma1=sigma;v1=v;end;run;Modelingthemeaneffect一般由經(jīng)濟(jì)學(xué)理論來,預(yù)測(cè)時(shí)則用AR過程procarimadata=one;identifyvar=dreteq;run;選AR(1)BuildinganGARCHModel2. TestingforARCHeffects(存在異方差?)UseQ-statisticsofsquaredresidualsprocautoregdata=one;modeldreteq=lret/archtest;quit;Q-test表明有強(qiáng)烈的ARCH效應(yīng)也可能有誤差自相關(guān),procautoregdata=one;modeldreteq=lret/dwprob;quit;誤差自相關(guān)不強(qiáng),可以先不管3.UsingAIC/BICtoselectmodelorder先試ARCH(1)procautoregdata=one;modeldreteq=lret/garch=(q=1);quit;再試GARCH(1,1)procautoregdata=one;modeldreteq=lret/garch=(p=1,q=1);quit;再試GARCH(1,2)procautoregdata=one;modeldreteq=lret/garch=(p=1,q=2);quit;再試GARCH(2,1)procautoregdata=one;modeldreteq=lret/garch=(p=2,q=1);quit;由AIC/BIC我們選GARCH(1,1)3.UsingAIC/BICtoselectmodelorder可能的誤差自相關(guān),試AR(1)-GARCH(1,1)procautoregdata=one;modeldreteq=lret/nlag=1garch=(p=1,q=1);quit;AR1系數(shù)不顯著AIC更大AR(1)-GARCH(1,1)還是最優(yōu)選擇。正是用來模擬數(shù)據(jù)的模型4.Modelchecking:If

themodeliscorrectlyspecified,thestandardizedresidualsepsilon(anditssquaredterm)shouldbeunpredictableQ-statofstandardizedresidualsandsquaredstandardizedresidualsprocautoregdata=one;modeldreteq=lret/garch=(p=1,q=1);outputout=outr=residualcev=vhat;quit;datatwo;setout;rs=residual/sqrt(vhat);rs2=rs*rs;r2=residual*residual;run;procarimadata=two;identifyvar=rs;run;procarimadata=two;identifyvar=rs2;Run;4.Modelchecking:Q-statofstandardizedresidualsandsquaredstandardizedresiduals為比較,我們看看誤差a本身(及其平方項(xiàng))的可預(yù)測(cè)性procarimadata=two;identifyvar=residual;run;有自相關(guān)的方差的誤差系列有微弱的自相關(guān)procarimadata=two;identifyvar=r2;run;本質(zhì)上就是ARCHtest故AR(1)-GARCH(1,1)合適選對(duì)了!GARCH模型選擇的其它問題:均值部分可以是任何符合經(jīng)濟(jì)學(xué)原理的模型,比如想要估計(jì)股票回報(bào)的特質(zhì)風(fēng)險(xiǎn),均值部分就是市場(chǎng)模型,甚至再加上市場(chǎng)回報(bào)的滯后。波動(dòng)率部分,一般來說,很少有超過GARCH(2,2)的。因?yàn)镚ARCH模型的MLE估計(jì)收斂大都不太好,參數(shù)太多時(shí)問題更大還有一種導(dǎo)致不收斂的原因是outliers的存在。實(shí)證發(fā)現(xiàn),美國市場(chǎng)上幾個(gè)主要股票(Ford,BankOne,P&G)的1996年到2000年的日度數(shù)據(jù)的GARCH模型估計(jì)收斂困難。而在去掉它們數(shù)據(jù)中的幾個(gè)奇異值后,收斂就好了怎么知道有奇異值?Skewness和Kurtosis非常大!我們可以看見,事實(shí)上這些股票回報(bào)的ARCH檢驗(yàn)值也都很小,原因也是outliers的存在因此,估計(jì)模型前先看看數(shù)據(jù)總是一個(gè)好習(xí)慣那如何處理outliers?如果是數(shù)據(jù)錯(cuò)誤,簡(jiǎn)單地去掉如果不是數(shù)據(jù)錯(cuò)誤,比如1987年的黑色星期五,1998年LTCM的幾乎破產(chǎn)等導(dǎo)致的市場(chǎng)激烈波動(dòng)等在用GARCH估計(jì)S&P500指數(shù)時(shí),是否包括1987年的黑色星期五,估計(jì)的volatility的長(zhǎng)期平均值會(huì)有幾個(gè)百分點(diǎn)的差別是否去掉依賴你的直觀,即這樣的激烈波動(dòng)是否對(duì)將來的波動(dòng)有影響,甚至是否會(huì)有可能重演如果不能去掉outlier,如何解決模型的收斂問題(包括其他不能收斂的情況)改變參數(shù)估計(jì)的初始值改變最大化似然函數(shù)的數(shù)值方法改變模型,用簡(jiǎn)單些的模型GARCH模型選擇的其它問題:一般來說,大多金融市場(chǎng)的GARCH模型都是用日度或高頻數(shù)據(jù),很少有用月度或更低頻的數(shù)據(jù)。這是因?yàn)榈皖l數(shù)據(jù)中的GARCHeffect比較弱做GARCH模型,用多長(zhǎng)時(shí)間的數(shù)據(jù)?這個(gè)問題與前面的outlier問題有關(guān),我們現(xiàn)在是否應(yīng)該從1985年開始從而包括87年的黑色星期五?這樣的某些特殊事件點(diǎn)可以是作為樣本選擇的考慮,如果你認(rèn)為那個(gè)事件還有影響,樣本區(qū)間就應(yīng)該包括它大概沒有多少人認(rèn)為1929年的大蕭條會(huì)對(duì)今天的股市有影響因此,不是越長(zhǎng)越好太長(zhǎng)了,會(huì)把已經(jīng)沒有影響的“outlier”包括進(jìn)來。太長(zhǎng)了也會(huì)有模型的結(jié)果變化問題但太短了,會(huì)影響模型的估計(jì)精度一般原則是:應(yīng)該用幾年(日度數(shù)據(jù))的數(shù)據(jù),樣本大到使得當(dāng)進(jìn)行樣本窗口滾動(dòng)前移時(shí),參數(shù)估計(jì)相對(duì)穩(wěn)定(肯定是越多越穩(wěn)定),但又沒有多到包括直觀認(rèn)為以前沒有影響的“outliers”。這個(gè)原則也適用于其它的模型數(shù)據(jù)選擇中GARCH模型選擇的其它問題:如果數(shù)據(jù)中有明顯的skew,應(yīng)該考慮student-t分布的GARCH。GARCHmodelwithotherfactorsprocautoregdata=wang.aindex;modeldreteq=lretgarch=(q=1,p=1);heterox1x2;outputout=outcev=vhat;Quit;這個(gè)模型可以用來研究波動(dòng)率在某一時(shí)點(diǎn)是否有跳躍(比如期貨的引入)Comments

onGARCHAdvantagesSimplicityGeneratesvolatilityclusteringHeavytails(highkurtosis)WeaknessesProvidesnoexplanation,apurestatisticalmodelNotsufficientlyadaptiveinpredictionSymmetricbtwpositive&negativepriorreturnsRestrictiveonparameters4OtherGARCHmodels有很多改進(jìn)的GARCH模型EGARCHIGARCHGARCH-in-meanThresholdGARCHEGARCHGARCHmodelhastwoproblemsPositiveconstraintforparametersCausedifficultyformodelestimationsymmetryinresponsestopastpositiveandnegativereturns,butweoftenobserveasymmetricimpactleverageeffectisonemechanismtocauseasymmetricresponseNelson(1991)proposesEGARCHmodelEGARCHAnEGARCH(m;s)model用對(duì)數(shù)形式,可以避免方差為負(fù)數(shù)的問題,從而不需要限制參數(shù)。這一點(diǎn)和cross-sectional中的異方差模型一樣估計(jì)、預(yù)測(cè)等與GARCH一樣procautoregdata=one;modeldreteq=lret/garch=(p=1,q=1,type=exp);quit;估計(jì)是dreteq=1.2152+0.4941lret+vv(t)=se

s2=-0.3854+0.6799s2(t-1)+0.5939g(e)g(e)=-0.004243e+|e|-E(|e|)q為負(fù),非對(duì)稱反應(yīng),但不顯著因?yàn)閿?shù)據(jù)是前面基于GARCH(1,1)模擬的,沒有非對(duì)稱性Example:monthlylogreturnsofIBMstockfromJanuary1926toDecember1997for864observations(textbook)EGARCHisveryclosetothestochasticvolatilitymodelA(simple)SVmodelisDifferencefromtheSVmodelsFilteringisrequiredinSVmodeltoestimatevolatilityModelestimationmethod:Simulation-basedmethod(MCMC,EMM)GARCHorEGARCHEventhoughEGARCHhasbetterpropertiesthanGARCH,butitismoredifficulttoestimateanEGARCHmodelIGARCH金融時(shí)間系列數(shù)據(jù)中,波動(dòng)率一般有非常強(qiáng)的持續(xù)性。在GARCH框架下(alpha+beta)

接近1,特別是在外匯市場(chǎng)中。比如日度sterling-USdollar匯率(1988年1月5日到2000年10月6日)的GARCH模型估計(jì)中,alpha+beta=0.991這樣,波動(dòng)率幾乎是一個(gè)單位根過程為此,Nelson(1990)提出IGARCH(1,1)modelNelson(1990)showsthateventhoughthevolatilityprocessisnotstationary,thisprocessisn’tlikethenon-stationaryARMAprocess,itcanbeestimatedasstationaryGARCHmodelbutthereisnolong-termmeanforthevolatilitybecauseofthenon-stationarity.HencethevolatilitytermstructuredonotconvergeThismodelhasoneparameterlessthantheGARCH,whichmakesthemodelbetterbecauseoftheestimationproblemofGARCHmodelThespecialcaseofalpha0=0(itisactuallytheEWMAmodeldiscussedlater)isusedinRiskMetrics(DevelopedbyJ.P.Morgan)forVaRcalculation.Themodelestimation,modelbuilding,andvolatilityforecastareallsimilartoGARCHGARCH,EGARCHorIGARCH,whichonetouse?ThefollowingmodelbuildingexampleshowstheselectionprocessExample:DailyNYSEcompositeindexSectionof3.10ofEndersusesittoshowhowtobuildaGARCHmodelStep1:meanprocess

Whichonetouse?Becausetheyareobtainedunderconstantvolatility,wewilltryGARCHvolatilityanyway,sokeepthembothatthemoment.Step2:testGARCHeffectStep3:modelselectionIGARCH?HowaboutEGARCH?LeverageeffectIGARCHorEGARCH?Step4:modelcheckingWewilldiscusstwo-stepsapproach

volatilitymodelsnext.Sincetwo-stepsapproachestimatevolatilityinthehistoryfirstandthenuseARMAtypesimplemodeltoforecast,hencewewilldiscussvolatilityestimateonly.RealizedvolatilityImpliedvolatilityRangemodel5Application:VaRGARCH模型有很多應(yīng)用,這里講在風(fēng)險(xiǎn)管理上的應(yīng)用風(fēng)險(xiǎn)管理是任何一家金融機(jī)構(gòu)的核心問題之一前臺(tái)業(yè)務(wù):掙錢風(fēng)險(xiǎn)管理:避免倒閉在險(xiǎn)價(jià)值(Value-at-risk,VaR)是一個(gè)被廣泛使用的風(fēng)險(xiǎn)度量定義:在險(xiǎn)價(jià)值(Value-at-risk,VaR)是一個(gè)資產(chǎn),在一定時(shí)期內(nèi)(h天),損失大于等于V的概率小于a,那么我們說這個(gè)資產(chǎn)的對(duì)應(yīng)h和a的VaR等于V。由于這個(gè)定義依賴于時(shí)間h和概率a,故我們經(jīng)常標(biāo)注這個(gè)VaR為VaRa,h如何理解VaRa,h的經(jīng)濟(jì)含義?或者說為什么VaRa,h是一個(gè)好的風(fēng)險(xiǎn)度量?假如一金融機(jī)構(gòu)目前的總資產(chǎn)(asset)為Pt,自有資產(chǎn)(equity)為V,負(fù)債為Pt–V,且在時(shí)間(t+h)之前沒有可能有新的equity加入。要使得該機(jī)構(gòu)在時(shí)間(t+h)那一天不破產(chǎn),就要求在(t+h)時(shí)的總資產(chǎn)Pt+h必須大于等于負(fù)債(Pt–V),即Pt+h>Pt–V或者說,如果這期間的損失Pt+h–Pt<(-V),就破產(chǎn)了。LehmanBrothers但絕對(duì)不破產(chǎn),幾乎是不可能的事。要革命總會(huì)有犧牲,連美國國債投資都會(huì)有違約風(fēng)險(xiǎn),而LTCM的破產(chǎn)就是由于俄國國債違約。我們能做的是把這種破產(chǎn)的概率a控制在一定范圍內(nèi),比如0.1%。這就是說,風(fēng)險(xiǎn)管理的最低要求是VaR小于自有資產(chǎn)!實(shí)際應(yīng)用VaRa,h有三個(gè)問題:設(shè)定一定時(shí)期(h天),設(shè)定概率a,計(jì)算先看給定a和h時(shí)的計(jì)算即是回報(bào)的VaR乘上當(dāng)期總資產(chǎn)如果mu=0,a=2.5%,x=-sigma*2x可以不是正態(tài)分布下面LTCM的例子表示了a和h的設(shè)定及VaR的簡(jiǎn)單計(jì)算過程上面LTCM例子中,計(jì)算VaR時(shí)用簡(jiǎn)單的歷史std,均值為零,正態(tài)分布(t分布)進(jìn)行但這是有問題的,VaR的計(jì)算的核心是回報(bào)的分布問題一般用t分布或正態(tài)分布要考慮均值部分,盡管比較簡(jiǎn)單問題在方差的預(yù)測(cè)前面介紹的波動(dòng)率模型可以用在這里下面用DailyreturnsofIBMstock(July3,62toDec.31,98,9190observations)Position:longon$10millions.問題:10天的回報(bào)均值,沒有調(diào)整10天的回報(bào)方差,做了簡(jiǎn)單調(diào)整。GARCH中有更合理的估計(jì)前面演示的是單個(gè)資產(chǎn)的VaR,如何計(jì)算一個(gè)具體的投資組合的VaR,比如LTCM?直接考察這個(gè)組合的回報(bào)數(shù)據(jù)優(yōu)點(diǎn):簡(jiǎn)單缺點(diǎn):有時(shí)沒有足夠的數(shù)據(jù)投資組合的結(jié)構(gòu)一般會(huì)變化,導(dǎo)致歷史回報(bào)數(shù)據(jù)不能很好反應(yīng)將來考察組合內(nèi)的每個(gè)資產(chǎn)的風(fēng)險(xiǎn),根據(jù)當(dāng)前的組合結(jié)構(gòu)加總問題在于需要估計(jì)資產(chǎn)之間的相關(guān)性多元GARCH模型是解決這個(gè)相關(guān)性問題的一個(gè)有效模型上面演示了用正態(tài)分布的GARCH模型計(jì)算VaR,理論上還可以用其它模型Student-t分布的GARCHfamily模型,這時(shí)波動(dòng)率的預(yù)測(cè)和VaR中要同時(shí)用student-t分布6RealizedVolatilityUsingstandardmethodtocalculatethehistoricvolatilityisthemostintuitivemethod.ItisusedinLTCMcase.Itisalsocalledrealizedvolatility。ItisusuallycalculatedbyusinghigherfrequentdataSupposeweliketoestimatethemonthlyvolatilityofastockreturnforamonth,wecanusedailyreturndatawithinthemonthAdvantage:SimpleWeaknesses:隱含假設(shè)為結(jié)構(gòu)變化,即在一個(gè)月之內(nèi)的方差相同,而在月末相鄰兩天(分別屬于兩個(gè)月)卻不一樣。這個(gè)假設(shè)沒有理論基礎(chǔ)。對(duì)月度方差,一般只有21/22個(gè)數(shù)據(jù),這樣的樣本量對(duì)方差估計(jì)來說偏少如果要計(jì)算周度、日度回報(bào)的方差,問題更大Whatifuseintradayreturntocalculatedaily/monthlyvolatilitytosolvethesmallsampleproblem?effectsofmarketmicrostructure(noises)Missing(oroverestimate)overnightvolatilities.Movingwindow(usingthepreviousndays’dailyreturns)isanothersolutiontothesmallsampleproblemButthereisaproblemknownas'ghosting'whereanextremereturnobservationcontinuestoaffectourvolatilityforecastandthensuddenlydropsoutofsampleTosolvethe“Ghosting”andimplicitstructurechangeproblem,EWMA(exponentiallyweightedmovingaverage)modelisproposedEWMAaddressestheseproblemsbyexponentiallyweightingthedata(inhistoricalvolatilitytheobservationsareequal-weighted)somorerecentreturnshavealargerimpactonthevolatilityestimation即同樣的邏輯,我們有l(wèi)越大,最近的return在波動(dòng)率的估計(jì)中越重要?但l=1并且n有限時(shí),就是通常的樣本方差(也叫等權(quán)方差)。最近的波動(dòng)在波動(dòng)率的估計(jì)中不是更重要為更好地理解l,我們把EWMA模型改寫成l越大,當(dāng)期的方差越依賴于上期的方差,而較少依賴于上期的波動(dòng),即更強(qiáng)的persistence當(dāng)l等于1,方差為常數(shù)!這個(gè)模型有些像IGARCH(1,1)即alpha0等于0時(shí)的IGARCH(1,1)就是EWMA模型但參數(shù)l的選取不一樣。在IGARCH中,beta是用歷史數(shù)據(jù)估計(jì)出來的,而在EWMA模型中,它一般是使用者主觀選取的如何主觀地選擇l?Asaruleofthumb,forfinancialmarkets,lischosenfrom0.75to0.98Lowerlvalueforshort-termforecast,andhigher

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論