云南省昆明市大哨中學2021-2022學年高一數(shù)學理期末試卷含解析_第1頁
云南省昆明市大哨中學2021-2022學年高一數(shù)學理期末試卷含解析_第2頁
云南省昆明市大哨中學2021-2022學年高一數(shù)學理期末試卷含解析_第3頁
云南省昆明市大哨中學2021-2022學年高一數(shù)學理期末試卷含解析_第4頁
云南省昆明市大哨中學2021-2022學年高一數(shù)學理期末試卷含解析_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省昆明市大哨中學2021-2022學年高一數(shù)學理期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.在△ABC中,B=,BC邊上的高等于BC,則sinA=()A. B. C. D.參考答案:D【考點】HU:解三角形的實際應(yīng)用;HT:三角形中的幾何計算.【分析】由已知,結(jié)合勾股定理和余弦定理,求出AB,AC,再由三角形面積公式,可得sinA.【解答】解:∵在△ABC中,B=,BC邊上的高等于BC,∴AB=BC,由余弦定理得:AC===BC,故BC?BC=AB?AC?sinA=?BC?BC?sinA,∴sinA=,故選:D2.設(shè)函數(shù)f(x)=則不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(3,+∞) B.(﹣3,1)∪(2,+∞) C.(﹣1,1)∪(3,+∞) D.(﹣∞,﹣3)∪(1,3)參考答案:A【考點】一元二次不等式的解法.【分析】先求f(1),依據(jù)x的范圍分類討論,求出不等式的解集.【解答】解:f(1)=3,當不等式f(x)>f(1)即:f(x)>3如果x<0

則x+6>3可得x>﹣3,可得﹣3<x<0.如果x≥0有x2﹣4x+6>3可得x>3或

0≤x<1綜上不等式的解集:(﹣3,1)∪(3,+∞)故選A.【點評】本題考查一元二次不等式的解法,考查分類討論的思想,是中檔題.3.在中,,則最短邊的邊長等于(

)A.

B.

C.

D.參考答案:D略4.已知2x=3,,則x+2y的值為()A.8

B.4

C.3

D.log48參考答案:C5.已知是上的減函數(shù),那么的取值范圍是()A.

B.

C.

D.參考答案:B略6.已知函數(shù)的部分圖象如圖所示,則下列說法正確的個數(shù)為(

)①f(x)的最小正周期為2π

②f(x)在內(nèi)單調(diào)遞減

③是f(x)的一條對稱軸

④是f(x)的一個對稱中心A.3 B.2 C.1 D.0參考答案:B【分析】根據(jù)函數(shù)圖象經(jīng)過的特殊點,可以求出相應(yīng)的參數(shù),最后根據(jù)正弦型函數(shù)的性質(zhì)逐一判斷即可.【詳解】由函數(shù)的圖象可知函數(shù)的最大值為2,因此.由函數(shù)的圖象可知:,因為,所以,又因為,所以,因此.①:函數(shù)的最小正周期為:,故本說法是錯誤的;②:當時,本說法是正確的;③:當時,,故本說法是錯誤的;④:當時,,故本說法是正確的.故選:B【點睛】本題考查了由正弦型函數(shù)的圖象求參數(shù)并判斷相關(guān)性質(zhì)的正確性,考查了數(shù)學運算能力.7.將函數(shù)的圖象上所有點的橫坐標伸長到原來的兩倍,同時將縱坐標縮小到原來的倍,得到函數(shù)y=g(x)的圖象按向量平移,得到函數(shù)的圖象,則可以是(

)A.(,1)

B.(,-1)

C.(,1)

D.(,1)參考答案:C8.已知點在圓外,則直線與圓的位置關(guān)系是A.相離

B.相交

C.相切

D.不確定參考答案:B9.某人在打靶中連續(xù)射擊兩次,事件“至多有一次中靶”的對立事件是A.至少有一次中靶 B.只有一次中靶C.兩次都中靶 D.兩次都不中靶參考答案:C【分析】至多有一次的反面是至少有兩次.【詳解】射擊兩次中靶的次數(shù)可能是0,1,2.至多1次中靶,即中靶次數(shù)為0或1,故它的對立事件為中靶兩次.選C.【點睛】本題考查對立事件的概念,解題關(guān)鍵是掌握至少、至多等詞語的否定.

10.在給定映射即的條件下,與B中元素對應(yīng)的A中元素是(

)A.

B.或

C.

D.或參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.已知定義域為的偶函數(shù)在區(qū)間上是增函數(shù),若,則實數(shù)的取值范圍是

參考答案:或12.給出下列命題:①函數(shù)與是同一函數(shù)②冪函數(shù)y=xα的圖象不可能在第四象限③(lg2)2+lg2·lg5+lg5的值等于1④函數(shù)f(x)=|x-1|的單調(diào)遞增區(qū)間是[1,+∞)其中正確的序號是

(寫出所有正確的序號)參考答案:②③④

13.在△ABC中,a,b,c分別是角A,B,C的對邊,已知a,b,c成等比數(shù)列,且,則的值為________.參考答案:【分析】利用成等比數(shù)列得到,再利用余弦定理可得,而根據(jù)正弦定理和成等比數(shù)列有,從而得到所求之值.【詳解】∵成等比數(shù)列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因為,所以,故.故答案為:.【點睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.14.函數(shù)的零點所在的區(qū)間(

)A.(0,1)

B.(1,2)

C.(2,3)

D.(3,4)參考答案:A15.(4分)從一個棱長為1的正方體中切去一部分,得到一個幾何體,其三視圖如圖,則該幾何體的體積為

.參考答案:考點: 由三視圖求面積、體積.專題: 分割補形法.分析: 先根據(jù)題目所給的幾何體的三視圖得出該幾何體的直觀圖,然后計算該幾何體的體積即可.解答: 解:由題目所給的幾何體的三視圖可得該幾何體的形狀如下圖所示:該幾何體是一棱長為1的正方體切去如圖所示的一角,∴剩余幾何體的體積等于正方體的體積減去竊取的直三棱錐的體積,∴V=1﹣=.故答案為:.點評: 本題主要以有三視圖得到幾何體的直觀圖為載體,考查空間想象能力,要在學習中注意訓練才行.16.為了解某地高一年級男生的身高情況,從其中的一個學校選取容量為60的樣本(60名男生的身高,單位:cm),分組情況如下:分組151.5~158.5158.5~165.5165.5~172.5172.5~179.5頻數(shù)62l

m頻率

a0.1則表中的m=

,a=

參考答案:6;0.45【詳解】故答案為m=6,a=0.45.

17.如圖,在△ABC中,AB=AC=3,cos∠BAC=,=2,則?的值為

.參考答案:-2【考點】9R:平面向量數(shù)量積的運算.【分析】利用向量的加法的三角形法以及向量的數(shù)量積的定義計算即可.【解答】解:∵=﹣,∴?=(+)?,=(+)?,=(+﹣)(﹣),=(+)(﹣),=(?+﹣2),=(3×3×+32﹣2×32),=﹣2,故答案為:﹣2.【點評】本題主要考察了向量的數(shù)量積的定義的應(yīng)用,解題中要注意向量加法、減法的三角形法則及向量共線定理的應(yīng)用三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.己知數(shù)列{an}是公差不為0的等差數(shù)列,,且成等比數(shù)列。(1)求數(shù)列{an}的通項公式;(2)設(shè),求數(shù)列{bn}的前n項和Sn.參考答案:19.已知偶函數(shù)在上是增函數(shù),試問在上是增函數(shù)還是減函數(shù)?請證明你的結(jié)論。參考答案:解:在上是減函數(shù)。證明:設(shè),則

…2分因在上是增函數(shù),所以

…………4分又是偶函數(shù),所以

………6分因此,在上是減函數(shù)。

…………8分20.已知△ABC為等邊角形,.點N,M滿足,,.設(shè).(1)試用向量和表示;(2)若,求的值.參考答案:(1);;(2).【分析】(1)根據(jù)向量線性運算法則可直接求得結(jié)果;(2)根據(jù)(1)的結(jié)論將已知等式化為;根據(jù)等邊三角形邊長和夾角可將等式變?yōu)殛P(guān)于的方程,解方程求得結(jié)果.【詳解】(1)(2)為等邊三角形且

,即:,解得:【點睛】本題考查平面向量線性運算、數(shù)量積運算的相關(guān)知識;關(guān)鍵是能夠?qū)⒌仁睫D(zhuǎn)化為已知模長和夾角的向量的數(shù)量積運算的形式,根據(jù)向量數(shù)量積的定義求得結(jié)果.21.(本小題滿分10分)已知,,且(1)求函數(shù)的解析式;(2)當時,的最小值是-4,求此時函數(shù)的最大值,并求出相應(yīng)的的值.參考答案:(1)即……5分

(2)

由,,,

,

,此時,.…………10分22.已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論