版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年湖南省株洲市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
5.建立共同愿景屬于()的管理觀念。
A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理
6.
7.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)8.設(shè)y=x+sinx,則y=()A.A.sinx
B.x
C.x+cosx
D.1+cosx
9.
10.
11.A.
B.
C.
D.
12.
13.
14.
15.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是()。A.
B.
C.
D.
16.
17.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
18.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
19.
20.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().
A.2sin2x
B.-2sin2x
C.sin2x
D.-sin2x
二、填空題(20題)21.22.23.24.25.設(shè)y=sin2x,則dy=______.26.
27.28.函數(shù)的間斷點為______.
29.
30.
31.
32.33.冪級數(shù)的收斂半徑為______.34.35.微分方程y''+y=0的通解是______.
36.
37.
38.
39.
40.
三、計算題(20題)41.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則42.43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.44.45.
46.
47.
48.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
49.將f(x)=e-2X展開為x的冪級數(shù).50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.求曲線在點(1,3)處的切線方程.54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
55.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
56.求微分方程的通解.57.
58.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
59.
60.證明:四、解答題(10題)61.62.研究y=3x4-8x3+6x2+5的增減性、極值、極值點、曲線y=f(x)的凹凸區(qū)間與拐點.63.64.
65.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。
66.求∫xcosx2dx。
67.68.
69.
70.求微分方程y"+9y=0的通解。
五、高等數(shù)學(xué)(0題)71.設(shè)函數(shù)
=___________。
六、解答題(0題)72.
參考答案
1.A
2.C
3.B
4.C
5.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。
6.D
7.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點M0的坐標(biāo)為(e,e),可知應(yīng)選D.
8.D
9.C
10.B
11.C據(jù)右端的二次積分可得積分區(qū)域D為選項中顯然沒有這個結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
12.D
13.D
14.A
15.C
16.A
17.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
18.B
19.A
20.B由復(fù)合函數(shù)求導(dǎo)法則,可得
故選B.
21.
22.π/4本題考查了定積分的知識點。
23.
本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
24.
本題考查的知識點為微分的四則運算.
注意若u,v可微,則
25.2cos2xdx這類問題通常有兩種解法.
解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,
因此dy=2cos2xdx.
解法2利用微分運算公式
dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.
26.
27.28.本題考查的知識點為判定函數(shù)的間斷點.
僅當(dāng),即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。
29.arctanx+C
30.
31.
32.
33.
;34.本題考查的知識點為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y一3z=0.35.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.
36.
37.本題考查的知識點為函數(shù)商的求導(dǎo)運算.
考生只需熟記導(dǎo)數(shù)運算的法則
38.39.本題考查的知識點為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。
40.11解析:41.由等價無窮小量的定義可知
42.
43.
列表:
說明
44.
45.
46.47.由一階線性微分方程通解公式有
48.
49.50.由二重積分物理意義知
51.函數(shù)的定義域為
注意
52.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
53.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
56.
57.
則
58.
59.
60.
61.
62.本題考查的知識點為導(dǎo)數(shù)的應(yīng)用.
這個題目包含了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性;
求函數(shù)的極值與極值點;
求曲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防雷設(shè)施安裝維護(hù)合同三篇
- 化妝品行業(yè)保安工作總結(jié)
- 兒童游樂設(shè)施設(shè)計美工工作總結(jié)
- 林業(yè)行業(yè)美工的森林保護(hù)
- 風(fēng)險防范工作總結(jié)
- 【八年級下冊地理粵教版】第8章 珠江三角洲 單元測試
- 本科生畢業(yè)論文答辯記錄表
- 2025屆揚州市高三語文(上)1月質(zhì)量調(diào)研試卷及答案解析
- 創(chuàng)新成果知識產(chǎn)權(quán)合同(2篇)
- DB33T 2188.4-2019 大型賽會志愿服務(wù)崗位規(guī)范 第4部分:禮賓接待志愿服務(wù)
- 生姜的產(chǎn)地分布
- 普通高中學(xué)業(yè)水平合格性考試(會考)語文試題(附答案)
- 統(tǒng)編語文八上文言文過關(guān)小測驗-《愚公移山》
- 12、口腔科診療指南及技術(shù)操作規(guī)范
- 醫(yī)藥電商行業(yè)發(fā)展趨勢報告
- 2020年10月自考00020高等數(shù)學(xué)一高數(shù)一試題及答案含評分標(biāo)準(zhǔn)
- 勞務(wù)派遣方案
- 電費異常問題篩選及處理途徑
- 幼兒園中班語言繪本《三只蝴蝶》課件
- 高中英語校本教材《英語美文閱讀與欣賞》
- 深邃的世界:西方繪畫中的科學(xué)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
評論
0/150
提交評論