版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱(chēng)為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長(zhǎng)軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.2.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減3.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.84.已知,則,不可能滿(mǎn)足的關(guān)系是()A. B. C. D.5.已知函數(shù)滿(mǎn)足,當(dāng)時(shí),,則()A.或 B.或C.或 D.或6.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.7.過(guò)拋物線的焦點(diǎn)F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動(dòng)點(diǎn),,若,則的最小值是()A.1 B.2 C.3 D.48.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.9.過(guò)拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.10.展開(kāi)項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.5111.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.12.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.84二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.集合,,若是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,則下列說(shuō)法正確的為_(kāi)_______①的值可以為2;②的值可以為;③的值可以為;15.如圖所示梯子結(jié)構(gòu)的點(diǎn)數(shù)依次構(gòu)成數(shù)列,則________.16.已知變量x,y滿(mǎn)足約束條件x-y≤0x+2y≤34x-y≥-6,則三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿(mǎn)足,求的最小值.18.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點(diǎn),且,當(dāng)平面時(shí),求實(shí)數(shù)的值;(2)當(dāng)平面與平面所成的銳二面角大小為時(shí),求與平面所成角的正弦.19.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時(shí)x的取值范圍;(2)設(shè)△ABC的角A,B,C所對(duì)的邊分別為a,b,c,若,,求△ABC的面積S的最大值.20.(12分)這次新冠肺炎疫情,是新中國(guó)成立以來(lái)在我國(guó)發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過(guò)很多磨難,但從來(lái)沒(méi)有被壓垮過(guò),而是愈挫愈勇,不斷在磨難中成長(zhǎng),從磨難中奮起.在這次疫情中,全國(guó)人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開(kāi)了對(duì)這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計(jì)中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國(guó)累計(jì)報(bào)告確診病例數(shù)量(單位:萬(wàn)人)之間的關(guān)系如下表:日期1234567全國(guó)累計(jì)報(bào)告確診病例數(shù)量(萬(wàn)人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.21.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.22.(10分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動(dòng)點(diǎn)M滿(mǎn)足=2,則=2,化簡(jiǎn)得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動(dòng)點(diǎn)軌跡,屬于中檔題.2、C【解析】
先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個(gè)單位得到,如圖所示,在上先遞減后遞增.故選:C【點(diǎn)睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.3、A【解析】
由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積.【詳解】由三視圖知原幾何體是一個(gè)四棱錐,四棱錐底面是邊長(zhǎng)為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.4、C【解析】
根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯(cuò)誤;∵,故D正確故C.【點(diǎn)睛】本題主要考查指數(shù)式和對(duì)數(shù)式的互化,對(duì)數(shù)的運(yùn)算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題5、C【解析】
簡(jiǎn)單判斷可知函數(shù)關(guān)于對(duì)稱(chēng),然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱(chēng)性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對(duì)稱(chēng)當(dāng)時(shí),,可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱(chēng),所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱(chēng)性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.6、D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對(duì)選項(xiàng)逐個(gè)判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對(duì)稱(chēng);在,上單調(diào)遞增,且在時(shí)使得;又,,所以選項(xiàng)成立;,比離對(duì)稱(chēng)軸遠(yuǎn),可得,選項(xiàng)成立;,,可知比離對(duì)稱(chēng)軸遠(yuǎn),選項(xiàng)成立;,符號(hào)不定,,無(wú)法比較大小,不一定成立.故選:.【點(diǎn)睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.7、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點(diǎn)共線時(shí),即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點(diǎn)為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過(guò)點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點(diǎn)共線時(shí),等號(hào)成立.故選:C.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意取最值的條件.8、A【解析】
畫(huà)出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.9、B【解析】
利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【點(diǎn)睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.10、B【解析】
展開(kāi)式中的每一項(xiàng)是由每個(gè)括號(hào)中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開(kāi)式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個(gè)括號(hào)都出1,即;(2)兩個(gè)括號(hào)出,兩個(gè)括號(hào)出,一個(gè)括號(hào)出1,即;(3)一個(gè)括號(hào)出,一個(gè)括號(hào)出,三個(gè)括號(hào)出1,即;所以展開(kāi)項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識(shí)的生成過(guò)程,考查定理的本質(zhì),即展開(kāi)式中每一項(xiàng)是由每個(gè)括號(hào)各出一項(xiàng)相乘組合而成的.11、C【解析】
根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點(diǎn)睛】本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問(wèn)題,屬于中檔題.12、B【解析】
由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對(duì)等式兩邊求導(dǎo),得,令,則.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開(kāi)式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14、②③【解析】
根據(jù)對(duì)稱(chēng)性,只需研究第一象限的情況,計(jì)算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對(duì)稱(chēng)性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時(shí),,此時(shí).故答案為:②③.【點(diǎn)睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,利用對(duì)稱(chēng)性是解題的關(guān)鍵.15、【解析】
根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16、-5【解析】
畫(huà)出x,y滿(mǎn)足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A時(shí),z最小,求解即可?!驹斀狻慨?huà)出x,y滿(mǎn)足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A【點(diǎn)睛】本題考查的是線性規(guī)劃問(wèn)題,解決線性規(guī)劃問(wèn)題的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無(wú)誤地作出可行域;二,畫(huà)目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會(huì)在可行域的端點(diǎn)或邊界上取得。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)首先通過(guò)對(duì)絕對(duì)值內(nèi)式子符號(hào)的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因?yàn)楹瘮?shù)定義域?yàn)椋春愠闪?,所以恒成立由單調(diào)性可知當(dāng)時(shí),有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當(dāng)且僅當(dāng),,時(shí),等號(hào)成立【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法,柯西不等式及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.18、(1);(2).【解析】
(1)連接交于點(diǎn),連接,利用線面平行的性質(zhì)定理可推導(dǎo)出,然后利用平行線分線段成比例定理可求得的值;(2)取中點(diǎn),連接、,過(guò)點(diǎn)作,則,作于,連接,推導(dǎo)出,,可得出為平面與平面所成的銳二面角,由此計(jì)算出、,并證明出平面,可得出直線與平面所成的角為,進(jìn)而可求得與平面所成角的正弦值.【詳解】(1)連接交于點(diǎn),連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點(diǎn),連接、,過(guò)點(diǎn)作,則,作于,連接.為的中點(diǎn),且,,且,所以,四邊形為平行四邊形,由于,,,,,,,為的中點(diǎn),所以,,,同理,,,,平面,,,,為面與面所成的銳二面角,,,,,則,,,平面,平面,,,,面,為與底面所成的角,,,.在中,.因此,與平面所成角的正弦值為.【點(diǎn)睛】本題考查利用線面平行的性質(zhì)求參數(shù),同時(shí)也考查了線面角的計(jì)算,涉及利用二面角求線段長(zhǎng)度,考查推理能力與計(jì)算能力,屬于中等題.19、(1);(2)【解析】
(1)先根據(jù)向量的數(shù)量積的運(yùn)算,以及二倍角公式和兩角和的正弦公式化簡(jiǎn)得到f(x)=,再根據(jù)正弦函數(shù)的性質(zhì)即可求出答案;(2)先求出C的大小,再根據(jù)余弦定理和基本不等式,即可求出,根據(jù)三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時(shí),,取最小值,所以,所求的取值集合是;(2)由,得,因?yàn)?,所以,所以?在中,由余弦定理,得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以的面積,因此的面積的最大值為.【點(diǎn)睛】本題考查了向量的數(shù)量積的運(yùn)算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.20、(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說(shuō)明它們的線性相關(guān)性越高來(lái)判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫(xiě)出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因?yàn)榕c的相關(guān)近似為0.99,說(shuō)明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.【點(diǎn)睛】本題主要考查線性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年標(biāo)準(zhǔn)化離婚冷靜期合同樣本版
- 2024年度許可合同:藥品生產(chǎn)許可協(xié)議3篇
- 2024版吊車(chē)維修保養(yǎng)及備件銷(xiāo)售合同2篇
- 2024年度家電產(chǎn)品存貨質(zhì)押擔(dān)保合同3篇
- 2024年冷庫(kù)安裝合同模板2篇
- 2024年光伏電站涂料施工與光伏效率合同3篇
- 2024版住宅銷(xiāo)售居間代理與客戶(hù)關(guān)系管理合同3篇
- 2024全新房地產(chǎn)買(mǎi)賣(mài)合同糾紛起訴狀范本3篇
- 2024版商業(yè)地產(chǎn)開(kāi)發(fā)單位間土地購(gòu)置款借款合同集合3篇
- 2024年度機(jī)械設(shè)備出口融資租賃合同3篇
- 《企業(yè)文化宣講》課件
- 電影《白日夢(mèng)想家》課件
- 無(wú)人機(jī)應(yīng)用與基礎(chǔ)操控入門(mén)課件
- 北京市東城區(qū)2023-2024學(xué)年高一年級(jí)上冊(cè)期末歷史試題
- GB/T 23863-2024博物館照明設(shè)計(jì)規(guī)范
- 人教版4年級(jí)上冊(cè)音樂(lè)測(cè)試(含答案)
- 大學(xué)寫(xiě)作(山東聯(lián)盟)智慧樹(shù)知到期末考試答案2024年
- 國(guó)開(kāi)電大操作系統(tǒng)-Linux系統(tǒng)使用-實(shí)驗(yàn)報(bào)告
- 《分?jǐn)?shù)乘法三》說(shuō)課稿
- 醫(yī)療機(jī)構(gòu)臨床用血管理的通知
- KPS評(píng)分表(精編版)
評(píng)論
0/150
提交評(píng)論