2023年江西藝術(shù)職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年江西藝術(shù)職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年江西藝術(shù)職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年江西藝術(shù)職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年江西藝術(shù)職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年江西藝術(shù)職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.如圖所示,設k1,k2,k3分別是直線l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C2.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為153.語句“若a>b,則a+c>b+c”是()

A.不是命題

B.真命題

C.假命題

D.不能判斷真假答案:B4.在極坐標系中與圓ρ=4sinθ相切的一條直線的方程為()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A5.拋物線y2=4x,O為坐標原點,A,B為拋物線上兩個動點,且OA⊥OB,當直線AB的傾斜角為45°時,△AOB的面積為______.答案:設直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因為OA⊥OB,設A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:856.已知隨機變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B7.某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,要使一年的總運費與總存儲費用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運費為4萬元/次,一年的總存儲費用為4x萬元,一年的總運費與總存儲費用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當且僅當1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運費與總存儲費用之和最?。蕿椋?0.8.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一點D,使△ABD為鈍角三角形的概率為()A.16B.13C.12D.23答案:由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的事件對應的是長度為3的一條線段,滿足條件的事件是組成鈍角三角形,包括兩種情況第一種∠ADB為鈍角,這種情況的分界是∠ADB=90°的時候,此時BD=1∴這種情況下,滿足要求的0<BD<1.第二種∠OAD為鈍角,這種情況的分界是∠BAD=90°的時候,此時BD=4∴這種情況下,不可能綜合兩種情況,若△ABD為鈍角三角形,則0<BD<1P=13故選B9.要從10名女生與5名男生中選出6名學生組成課外活動小組,則符合按性別比例分層抽樣的概率為()

A.

B.

C.

D.

答案:C10.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.11.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域為R,選項中A,D定義域不是R,是A、D不正確.選項C的對應法則不同,C不正確.故選B.12.對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)

(n是不小于2的正整數(shù)),對于任意p,q∈1,2,3,…,n,當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數(shù)對,故為:4.13.設f(n)=nn+1,g(n)=(n+1)n,n∈N*.

(1)當n=1,2,3,4時,比較f(n)與g(n)的大?。?/p>

(2)根據(jù)(1)的結(jié)果猜測一個一般性結(jié)論,并加以證明.答案:(1)當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.14.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因為∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.15.與函數(shù)y=x相等的函數(shù)是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:對于A,f(x)=x(x≥0),不符合;對于B,f(x)=x(x≠0),不符合;對于C,f(x)=|x|(x∈R),不符合;對于D,f(x)=x(x∈R),符合;故選D.16.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C17.求證:三個兩兩垂直的平面的交線兩兩垂直.答案:設三個互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個平面的公共點為O,如圖所示:在平面γ內(nèi),除點O外,任意取一點M,且點M不在這三個平面中的任何一個平面內(nèi),過點M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質(zhì)可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ內(nèi),可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.18.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P,若PBPA=12,PCPD=13,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.19.設a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.20.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.21.設a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當x<0時,0<b<1∴a>b22.已知正方體ABCD-A1B1C1D1,點E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:

(1)AC1=x(AB+BC+CC1),則x=______;

(2)AE=AA1+xAB+yAD,則x=______,y=______;

(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.23.一動圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設動圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點P的軌跡是雙曲線的一支.故選C.24.由直線y=x+1上的一點向圓(x-3)2+y2=1引切線,則切線長的最小值為()

A.1

B.2

C.

D.3答案:C25.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()

A.

B.

C.

D.答案:D26.點M的直角坐標是,則點M的極坐標為()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C27.(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數(shù)相等,則n=()A.6B.7C.8D.9答案:二項式展開式的通項為Tr+1=3rCnrxr∴展開式中x5與x6的系數(shù)分別是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故選B28.根據(jù)給出的空間幾何體的三視圖,用斜二側(cè)畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.29.擬定從甲地到乙地通話m分鐘的電話費由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費為10.6元,則通話時間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].30.袋中有5個小球(3白2黑),現(xiàn)從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C31.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.32.證明不等式的最適合的方法是()

A.綜合法

B.分析法

C.間接證法

D.合情推理法答案:B33.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.34.某次考試,滿分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫出當輸入一個同學的成績x時,輸出這個同學屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個成績X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束35.根據(jù)給出的程序語言,畫出程序框圖,并計算程序運行后的結(jié)果.

答案:程序框圖:模擬程序運行:當j=1時,n=1,當j=2時,n=1,當j=3時,n=1,當j=4時,n=2,…當j=8時,n=2,…當j=11時,n=2,當j=12時,此時不滿足循環(huán)條件,退出循環(huán)程序運行后的結(jié)果是:2.36.設A=xn+x-n,B=xn-1+x1-n,當x∈R+,n∈N+時,求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當x≥1時,x-1≥0,x2n-1-1≥0;當x<1時,x-1<0,x2n-1<0,即x-1與x2n-1-1同號.∴A-B≥0.∴A≥B.37.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當平面與圓柱的底面平行時,截圓柱面所產(chǎn)生的截面形狀為圓;當平面與圓柱的底面不平行時,截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓38.已知2a=3b=6c則有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C39.如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O為圓心的同一個圓上.答案:連接OE,OF,OG,OH.∵四邊形ABCD為菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分別為AB、BC、CD、DA的中點,∴OE=OF=OG=OH=12AB,∴E、F、G、H四點在以O為圓心,12AB為半徑的圓上.40.從點A(2,-1,7)沿向量=(8,9,-12)的方向取線段長||=34,則B點坐標為()

A.(-9,-7,7)

B.(18,17,-17)

C.(9,7,-7)

D.(-14,-19,31)答案:B41.閱讀程序框圖,運行相應的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B42.如果拋物線y2=a(x+1)的準線方程是x=-3,那么這條拋物線的焦點坐標是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個單位長度得到,因為拋物線y2=a(x+1)的準線方程是x=-3,所以拋物線y2=ax的準線方程是x=-2,且焦點坐標為(2,0),那么拋物線y2=a(x+1)的焦點坐標為(1,0).故選C.43.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對答案:B44.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證

≥,只要證

≥,即證

≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當要證明的不等式形式上比較復雜時,常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學推理中常用的思維方法,特別是這兩種方法的綜合運用能力,對解決實際問題有重要的作用.這兩種數(shù)學方法是高考考查的重要數(shù)學思維方法.45.已知一個幾何體是由上下兩部分構(gòu)成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(

)答案:A46.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點,且則C的坐標為()

A.

B.

C.

D.答案:C47.在平面直角坐標系xOy中,點A(-1,-2)、B(2,3)、C(-2,-1).

(1)求以線段AB、AC為鄰邊的平行四邊形兩條對角線的長;

(2)設實數(shù)t滿足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對角線的長分別為42、210.(方法二)設該平行四邊形的第四個頂點為D,兩條對角線的交點為E,則:E為B、C的中點,E(0,1)又E(0,1)為A、D的中點,所以D(1,4)故所求的兩條對角線的長分別為BC=42、AD=210;(2)由題設知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-11548.若非零向量滿足,則()

A.

B.

C.

D.答案:C49.經(jīng)過拋物線y2=2x的焦點且平行于直線3x-2y+5=0的直線的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A50.用綜合法或分析法證明:

(1)如果a>0,b>0,則lga+b2≥lga+lgb2(2)求證6+7>22+5.答案:證明:(1)∵a>0,b>0,a+b2≥ab,∴l(xiāng)ga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要證6+7>22+5,只需證明(6+7)

2>(8+5)2,即證明242>

240,也就是證明42>40,上式顯然成立,故原結(jié)論成立.第2卷一.綜合題(共50題)1.以A(1,5)、B(5,1)、C(-9,-9)為頂點的三角形是()

A.等邊三角形

B.等腰三角形

C.不等邊三角形

D.直角三角形答案:B2.若函數(shù)f(x)=x+1的值域為(2,3],則函數(shù)f(x)的定義域為______.答案:∵f(x)=x+1的值域為(2,3],∴2<x+1≤3∴1<x≤2故為:(1,2]3.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D4.如圖,圓O上一點C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:105.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)

(1)求實數(shù)a的值;

(2)求矩陣M的特征值及其對應的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.6.在數(shù)列{an}中,a1=1,an+1=2an2+an(n∈N+),

(1)求a1,a2,a3并猜想數(shù)列{an}的通項公式;

(2)證明上述猜想.答案:(1)a1=1.a(chǎn)2=2a12+a1=22+1=23.a(chǎn)3=2a22+a2=2×232+23=12(2)猜想an=2n+1.證明:當n=1時顯然成立.假設當n=k(k≥1)時成立,即ak=2k+1則當n=k+1時,ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.7.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()

A.A88

B.A55A44

C.A44A44

D.A85答案:B8.對于實數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.9.從點A(2,-1,7)沿向量=(8,9,-12)的方向取線段長||=34,則B點坐標為()

A.(-9,-7,7)

B.(18,17,-17)

C.(9,7,-7)

D.(-14,-19,31)答案:B10.已知隨機變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C11.設復數(shù)z=x+yi(x,y∈R)與復平面上點P(x,y)對應.

(1)設復數(shù)z滿足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈

(32

3)),當n為奇數(shù)時,動點P(x,y)的軌跡為C1;當n為偶數(shù)時,動點P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點D(2,2),求軌跡C1與C2的方程;

(2)在(1)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于233,求實數(shù)x0的取值范圍.答案:(1)方法1:①當n為奇數(shù)時,|z+3|-|z-3|=2a,常數(shù)a∈

(32

3),軌跡C1為雙曲線,其方程為x2a2-y29-a2=1;…(3分)②當n為偶數(shù)時,|z+3|+|z-3|=4a,常數(shù)a∈

(32

3),軌跡C2為橢圓,其方程為x24a2+y24a2-9=1;…(6分)依題意得方程組44a2+24a2-9=14a2-29-a2=1?4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因為32<a<3,所以a=3,此時軌跡為C1與C2的方程分別是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依題意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a?|z+3|=3a|z-3|=a…(3分)軌跡為C1與C2都經(jīng)過點D(2,2),且點D(2,2)對應的復數(shù)z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23對應的軌跡C1是雙曲線,方程為x23-y26=1(x>0);|z+3|+|z-3|=43對應的軌跡C2是橢圓,方程為x212+y23=1.…(9分)(2)由(1)知,軌跡C2:x212+y23=1,設點A的坐標為(x,y),則|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)當0<43x0≤23即0<x0≤332時,|AB|2min=3-13x20≥43?0<x0≤5當43x0>23即x0>332時,|AB|min=|x0-23|≥233?x0≥833,…(16分)綜上,0<x0≤5或x0≥833.…(18分)12.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π613.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.14.設a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.

(1)求b和c;

(2)求c在a方向上的射影;

(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d

)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|

|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.15.過點A(0,2),且與拋物線C:y2=6x只有一個公共點的直線l有()條.A.1B.2C.3D.4答案:∵點A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個公共點的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對稱軸平行,故選C.16.已知,,那么P(B|A)等于()

A.

B.

C.

D.答案:B17.在直徑為4的圓內(nèi)接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D18.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D19.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.20.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.21.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.22.某公司的管理機構(gòu)設置是:設總經(jīng)理一個,副總經(jīng)理兩個,直接對總經(jīng)理負責,下設有6個部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財務部和保衛(wèi)部.請根據(jù)以上信息補充該公司的人事結(jié)構(gòu)圖,其中①、②處應分別填()

A.保衛(wèi)部,安全部

B.安全部,保衛(wèi)部

C.質(zhì)檢中心,保衛(wèi)部

D.安全部,質(zhì)檢中心

答案:B23.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個負數(shù)”時的假設為()

A.a(chǎn),b,c,d中至少有一個正數(shù)

B.a(chǎn),b,c,d全為正數(shù)

C.a(chǎn),b,c,d全都大于等于0

D.a(chǎn),b,c,d中至多有一個負數(shù)答案:C24.已知x,y的取值如下表所示:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),且y^=0.95x+a,以此預測當x=2時,y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線性回歸方程是y=0.95x+2.6,∴預測當x=2時,y=0.95×2+2.6=4.5故為:4.525.閱讀程序框圖,運行相應的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B26.“a=2”是“直線ax+2y=0平行于直線x+y=1”的(

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C27.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C28.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設方程有一根x1的絕對值大于或等于1,即假設|x1|≥1,以下結(jié)論正確的是()

A.(1)的假設錯誤,(2)的假設正確

B.(1)與(2)的假設都正確

C.(1)的假設正確,(2)的假設錯誤

D.(1)與(2)的假設都錯誤答案:A29.圓的極坐標方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標是(1,-π3).故為(1,-π3).30.如圖,某公司制造一種海上用的“浮球”,它是由兩個半球和一個圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.

(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?

(2)假設該“浮球”的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元.求該“浮球”的建造費用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元,∴該“浮球”的建造費用為2π×20+π×30=70π≈220元.31.已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足PN+12NM=0,PM?PF=0.

(Ⅰ)求動點N的軌跡E的方程;

(Ⅱ)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設N(x,y),則由PN+12NM=0,得P為MN的中點.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點N的軌跡E的方程y2=4x.(Ⅱ)設直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設A(x1,y1),B(x2,y2),則

y1+y2=4k,y1y2=-4.假設存在點C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關(guān)于m的方程m2-m(4k2+2)-3=0有解.∴假設成立,即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.32.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結(jié)果,故選C.33.兩個正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()

A.兩個球

B.兩個長方體

C.兩個圓柱

D.兩個圓錐答案:A34.已知圓的極坐標方程為ρ=4cosθ,圓心為C,點P的極坐標為(4,π3),則|CP|=______.答案:圓的極坐標方程為ρ=4cosθ,圓的方程為:x2+y2=4x,圓心為C(2,0),點P的極坐標為(4,π3),所以P的直角坐標(2,23),所以|CP|=(2-2)2+(23-0)2=23.故為:23.35.點O是△ABC內(nèi)一點,若+=-,則是S△AOB:S△AOC=()

A.1

B.

C.

D.答案:A36.不等式的解集是(

A.

B.

C.

D.答案:D37.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A38.將一個總體分為A、B、C三層,其個體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應從C中抽取樣本的個數(shù)為______個.答案:由分層抽樣的定義可得應從B中抽取的個體數(shù)為180×25+3+2=36,故為:36.39.已知函數(shù)f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關(guān)系為______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又

f(x)=(12)x在R上是減函數(shù),∴f(a+b2)≤f(ab)

≤f(2aba+b)即A≤B≤C故為:A≤B≤C.40.設=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()

A.平行

B.垂直

C.相交但不垂直

D.不能確定答案:B41.規(guī)定符號“△”表示一種運算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,則函數(shù)f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1對于x需x≥0,∴對于f(x)=x+x+1=(x+12)2+34≥1故函數(shù)f(x)的值域為[1,+∞)故為:[1,+∞)42.平面向量的夾角為,則等于(

A.

B.3

C.7

D.79答案:A43.(不等式選講)

已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:

,

相加得:左3……………(10分)44.設隨機變量ζ~N(2,p),隨機變量η~N(3,p),若,則P(η≥1)=()

A.

B.

C.

D.答案:D45.某學校高一、高二、高三共有學生3500人,其中高三學生數(shù)是高一學生數(shù)的兩倍,高二學生數(shù)比高一學生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應抽取高一學生數(shù)為()

A.8

B.11

C.16

D.10答案:A46.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.47.離心率e=23,短軸長為85的橢圓標準方程為______.答案:離心率e=23,短軸長為85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以橢圓標準方程為x2144+y280=1或y2144+x280=1故為x2144+y280=1或y2144+x280=148.教材中“坐標平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.答案:這兩章的內(nèi)容都是通過建立直角坐標系,用代數(shù)中的函數(shù)思想來解決圖形中的幾何性質(zhì).故為用代數(shù)的方法研究圖形的幾何性質(zhì)解析:教材中“坐標平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.49.點(2,-2)的極坐標為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標為(22,-π4)故為(22,-π4).50.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C第3卷一.綜合題(共50題)1.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()

A向東南航行km

B.向東南航行2km

C.向東北航行km

D.向東北航行2km答案:A2.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.3.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域為______.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].4.某初級中學領(lǐng)導采用系統(tǒng)抽樣方法,從該校預備年級全體800名學生中抽50名學生做牙齒健康檢查.現(xiàn)將800名學生從1到800進行編號,求得間隔數(shù)k==16,即每16人抽取一個人.在1~16中隨機抽取一個數(shù),如果抽到的是7,則從33~48這16個數(shù)中應取的數(shù)是(

A.40

B.39

C.38

D.37答案:B5.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④6.(坐標系與參數(shù)方程選做題)在極坐標系中,點M(ρ,θ)關(guān)于極點的對稱點的極坐標是______.答案:由點的極坐標的意義可得,點M(ρ,θ)關(guān)于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關(guān)于極點的對稱點的極坐標是(ρ,π+θ),故為(ρ,π+θ).7.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對答案:B8.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關(guān)系是______.答案:根據(jù)拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進而可推斷圓與y軸位置關(guān)系是相切.9.如圖是拋物線形拱橋,當水面在l時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為______米.答案:如圖建立直角坐標系,設拋物線方程為x2=my,將A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面寬為26m.故為:26.10.某廠一批產(chǎn)品的合格率是98%,檢驗單位從中有放回地隨機抽取10件,則計算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機抽取,所以X服從二項分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.11.在下面的圖示中,結(jié)構(gòu)圖是()

A.

B.

C.

D.

答案:B12.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:

①當點A在圓C上時,直線l與圓C相切;

②當點A在圓C內(nèi)時,直線l與圓C相離;

③當點A在圓C外時,直線l與圓C相交.

其中正確的命題個數(shù)是()

A.0

B.1

C.2

D.3答案:D13.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標準形式得:x21sinα+y21cosα=1.∵方程表示焦點在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)14.設a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設n=k時,結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立15.直線(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A16.如圖,AB是半圓O的直徑,C是AB延長線上一點,CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.17.設ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認為正確的是______.

①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結(jié)論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤18.P為橢圓x225+y216=1上一點,F(xiàn)1,F(xiàn)2分別為其左,右焦點,則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.19.某射手射擊所得環(huán)數(shù)X的分布列為:

ξ

4

5

6

7

8

9

10

P

0.02

0.04

0.06

0.09

0.28

0.29

0.22

則此射手“射擊一次命中環(huán)數(shù)大于7”的概率為()

A.0.28

B.0.88

C.0.79

D.0.51答案:C20.如圖算法輸出的結(jié)果是______.答案:當I=1時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=2,I=4;當I=4時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=4,I=7;當I=7時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=8,I=10;當I=10時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=16,I=13;當I=13時,不滿足循環(huán)的條件,退出循環(huán),輸出S值16故為:1621.經(jīng)過原點,圓心在x軸的負半軸上,半徑等于2的圓的方程是______.答案:∵圓過原點,圓心在x軸的負半軸上,∴圓心的橫坐標的相反數(shù)等于圓的半徑,又∵半徑r=2,∴圓心坐標為(-2,0),由此可得所求圓的方程為(x+2)2+y2=2.故為:(x+2)2+y2=222.設P是邊長為23的正△ABC內(nèi)的一點,x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點∴點P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當且僅當x=y=z=1時,x+y+z的最大值為3故為:323.已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當x=100時,y=95.76%=0.9576,結(jié)合選項檢驗選項A:x=100,y=0.0424,故排除A選項B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x24.用“斜二測畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設正三角形的標出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測畫法”畫法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2425.從四個公司按分層抽樣的方法抽取職工參加知識競賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個公司抽取的職工人數(shù)分別為12,21,25,43,則這四個公司的總?cè)藬?shù)為()

A.101

B.808

C.1212

D.2012答案:B26.設二項式(33x+1x)n的展開式的各項系數(shù)的和為P,所有二項式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對于二項式(33x+1x)n的展開式的所有二項式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.27.4名同學分別報名參加學校的足球隊,籃球隊,乒乓球隊,每人限報其中的一個運動隊,不同報法的種數(shù)是()

A.34

B.43

C.24

D.12答案:A28.如果命題P:?∈{?},命題Q:??{?},那么下列結(jié)論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.29.滿足{1,2}∪A={1,2,3}的集合A的個數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數(shù)為4.30.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.31.已知a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),且過點(1,2),O為原點.求△OAB面積的最小值.答案:∵a>0,b>0,直線l與x軸、y軸分別交于A(a,0),B(0,b),∴直線l的方程為xa+yb=1,又直線l過點(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面積為:12ab≥12×8=4,當且僅當1a=2b=12,即a=2且b=4時,等號成立.故△OAB面積的最小值是4.32.設直線y=kx與橢圓x24+y23=1相交于A、B兩點,分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個焦點,則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡整理得(3+4k2)x2=12(*)因為分別過A、B向x軸作垂線,垂足恰為橢圓的兩個焦點,故方程的兩個根為±1.代入方程(*),得k=±32故選A.33.設S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當n=2時,n2=4故S(2)=12+13+14故選D34.P為△ABC內(nèi)一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長

PB、PC

B1、C1,使

PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形

AB1C1

的重心,設三角形

AB1C1

的面積為

3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31135.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.36.如圖程序框圖表達式中N=______.答案:該程序按如下步驟運行①N=1×2,此時i變成3,滿足i≤5,進入下一步循環(huán);②N=1×2×3,此時i變成4,滿足i≤5,進入下一步循環(huán);③N=1×2×3×4,此時i變成5,滿足i≤5,進入下一步循環(huán);④N=1×

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論