版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.2.函數(shù)的圖象大致為()A. B.C. D.3.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.24.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1475.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”6.如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.7.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.8.的展開式中有理項有()A.項 B.項 C.項 D.項9.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣8510.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.11.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.12.定義在上的函數(shù)與其導函數(shù)的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數(shù)的單調遞減區(qū)間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線C:(,)的頂點到漸近線的距離為,則的最小值________.14.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.15.某中學數(shù)學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數(shù)為81,乙組5名同學成績的中位數(shù)為73,則x-y的值為________.16.已知,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調性;(2)若在定義域內是增函數(shù),且存在不相等的正實數(shù),使得,證明:.18.(12分)已知關于的不等式解集為().(1)求正數(shù)的值;(2)設,且,求證:.19.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.20.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.21.(12分)唐詩是中國文學的瑰寶.為了研究計算機上唐詩分類工作中檢索關鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統(tǒng)計了每個類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛情婚姻詠史懷古邊塞戰(zhàn)爭山水田園交游送別羈旅思鄉(xiāng)其他總計篇數(shù)100645599917318500含“山”字的篇數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;(2)已知檢索關鍵字的選取規(guī)則為:①若有超過95%的把握判斷“某字”與“某類別”有關系,則“某字”為“某類別”的關鍵字;②若“某字”被選為“某類別”關鍵字,則由其對應列聯(lián)表得到的的觀測值越大,排名就越靠前;設“山”“簾”“花”和“愛情婚姻”對應的觀測值分別為,,.已知,,請完成下面列聯(lián)表,并從上述三個字中選出“愛情婚姻”類別的關鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計含“花”字的篇數(shù)不含“花”的篇數(shù)總計附:,其中.0.050.0250.0103.8415.0246.63522.(10分)設橢圓的左右焦點分別為,離心率,右準線為,是上的兩個動點,.(Ⅰ)若,求的值;(Ⅱ)證明:當取最小值時,與共線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.2、A【解析】
確定函數(shù)在定義域內的單調性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質,如奇偶性、單調性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.3、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質的應用,屬于基礎題.4、B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題5、B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.6、D【解析】
根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.7、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質與識圖能力,一般根據(jù)四個選擇項來判斷對應的函數(shù)性質,即可排除三個不符的選項,屬于中檔題.8、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.9、D【解析】
由等比數(shù)列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.10、A【解析】
設坐標,根據(jù)向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數(shù)量積運算;關鍵是利用動點坐標表示出變量,根據(jù)平面向量數(shù)量積的坐標運算可整理得軌跡方程.11、C【解析】
聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.12、B【解析】
先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導函數(shù)的圖象,求出函數(shù)的導數(shù)為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點,但其導函數(shù)圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點,則其導函數(shù)圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數(shù)求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調遞減區(qū)間為.故選:B.【點睛】本題考查利用圖象求函數(shù)的單調區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導函數(shù)的圖象,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)雙曲線的方程求出其中一條漸近線,頂點,再利用點到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個頂點,所以,解得,則,當且僅當時,取等號,所以的最小值為.故答案為:【點睛】本題考查了雙曲線的幾何性質、點到直線的距離公式、基本不等式求最值,注意驗證等號成立的條件,屬于基礎題.14、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關于關于參數(shù)的關系,根據(jù)表達式的取值分析出,再用數(shù)學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數(shù)均有.所以.當時,證明:對任意的正整數(shù)都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數(shù)學歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結合參數(shù)的范圍問題進行分析.屬于難題.15、【解析】
根據(jù)莖葉圖中的數(shù)據(jù),結合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學成績的平均數(shù)為,解得;又乙班5名同學的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.16、【解析】
首先利用,將其兩邊同時平方,利用同角三角函數(shù)關系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關系式,倍角公式,誘導公式,屬于簡單題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,在上遞增,在上遞減;當時,在上遞增,在上遞減,在上遞增;當時,在上遞增;當時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對求導,分,,進行討論,可得的單調性;(2)在定義域內是是增函數(shù),由(1)可知,,設,可得,則,設,對求導,利用其單調性可證明.【詳解】解:的定義域為,因為,所以,當時,令,得,令,得;當時,則,令,得,或,令,得;當時,,當時,則,令,得;綜上所述,當時,在上遞增,在上遞減;當時,在上遞增,在上遞減,在上遞增;當時,在上遞增;當時,在上遞增,在上遞減,在上遞增;(2)在定義域內是是增函數(shù),由(1)可知,此時,設,又因為,則,設,則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因為,所以,即,又在遞增,所以,即.【點睛】本題主要考查利用導數(shù)研究含參函數(shù)的單調性及導數(shù)在極值點偏移中的應用,考查學生分類討論與轉化的思想,綜合性大,屬于難題.18、(1)1;(2)證明見解析.【解析】
(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質,得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當且僅當時取等號綜上.【點睛】本題主要考查了求絕對值不等式中參數(shù)的范圍以及基本不等式的應用,屬于中檔題.19、(1)故函數(shù)在上單調遞增,在上單調遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導后根據(jù)導函數(shù)的符號判斷單調性.(Ⅱ)分析題意可得對任意,恒成立,構造函數(shù),則有對任意,恒成立,然后通過求函數(shù)的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數(shù)在上單調遞增;當時,令,解得;令,解得.故函數(shù)在上單調遞增,在上單調遞減.綜上,當時,函數(shù)在上單調遞增;當時,函數(shù)在上單調遞增,在上單調遞減.(II)由題意知.,當時,函數(shù)單調遞增.不妨設,又函數(shù)單調遞減,所以原問題等價于:當時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調遞增,所以函數(shù)在上的最大值為.由,解得.故實數(shù)的最小值為.20、(1)證明見詳解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吊車協(xié)議書參考
- 個人汽車買賣協(xié)議模板
- 闌尾切除術病因介紹
- 中考政治拓展提升篇知識梳理
- (2024)某鎮(zhèn)解決污染水項目可行性研究報告(一)
- 重慶2020-2024年中考英語5年真題回-學生版-專題10 書面表達
- 典型設備管理舉例- 隋向30課件講解
- 云南省保山市智源初級中學2024-2025學年九年級上學期12月月考歷史試卷-A4
- 山東省東營市廣饒縣樂安中學2024-2025學年八年級上學期12月月考化學試題-A4
- 2023年藥品包裝機械項目籌資方案
- 2024年貴州省中考理科綜合試卷(含答案解析)
- 2024年朝陽道路旅客運輸駕駛員從業(yè)資格考試試題及答案
- 出租車公司安全管理制度出租公司
- 急診科上墻制度(一)
- 環(huán)境檢測實驗室分析人員績效考核方案
- 大學生勞動教育(高職版)智慧樹知到期末考試答案章節(jié)答案2024年深圳職業(yè)技術大學
- 路基土石方數(shù)量計算表
- 翡翠智慧樹知到期末考試答案章節(jié)答案2024年保山學院
- 青年班主任心得體會7篇
- 2023人教版新教材高中物理必修第三冊同步練習-全書綜合測評
- 月主題活動幼兒園主題活動記錄表
評論
0/150
提交評論