版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線(xiàn)C:y2=2px的焦點(diǎn)F是雙曲線(xiàn)C2:x2m-y21-m=1A.2+1 B.22+3 C.2.已知,則()A. B. C. D.3.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-24.已知的展開(kāi)式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.35.已知雙曲線(xiàn)的右焦點(diǎn)為,過(guò)的直線(xiàn)交雙曲線(xiàn)的漸近線(xiàn)于兩點(diǎn),且直線(xiàn)的傾斜角是漸近線(xiàn)傾斜角的2倍,若,則該雙曲線(xiàn)的離心率為()A. B. C. D.6.已知α,β是兩平面,l,m,n是三條不同的直線(xiàn),則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β7.為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線(xiàn),如圖所示.勞倫茨曲線(xiàn)為直線(xiàn)時(shí),表示收入完全平等.勞倫茨曲線(xiàn)為折線(xiàn)時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱(chēng)為基尼系數(shù).對(duì)于下列說(shuō)法:①越小,則國(guó)民分配越公平;②設(shè)勞倫茨曲線(xiàn)對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則;④若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④8.如圖,在平面四邊形中,滿(mǎn)足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.9.已知直線(xiàn):過(guò)雙曲線(xiàn)的一個(gè)焦點(diǎn)且與其中一條漸近線(xiàn)平行,則雙曲線(xiàn)的方程為()A. B. C. D.10.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.211.拋物線(xiàn)的準(zhǔn)線(xiàn)方程是,則實(shí)數(shù)()A. B. C. D.12.在展開(kāi)式中的常數(shù)項(xiàng)為A.1 B.2 C.3 D.7二、填空題:本題共4小題,每小題5分,共20分。13.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點(diǎn),若P為半徑OC上的動(dòng)點(diǎn),則的最小值為.14.已知全集,集合,則______.15.已知向量,滿(mǎn)足,,,則向量在的夾角為_(kāi)_____.16.已知,則_____。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.18.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時(shí),求證:.19.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.20.(12分)在極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線(xiàn)的參數(shù)方程為(為參數(shù)),求直線(xiàn)與曲線(xiàn)的交點(diǎn)的直角坐標(biāo).21.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.22.(10分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線(xiàn)段EF的中點(diǎn).求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
先由題和拋物線(xiàn)的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線(xiàn)的半焦距c的值,再利用雙曲線(xiàn)的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線(xiàn)焦點(diǎn)F1,0,準(zhǔn)線(xiàn)與x軸交點(diǎn)F'(-1,0),雙曲線(xiàn)半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線(xiàn)的準(zhǔn)線(xiàn),從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線(xiàn)的離心率為e=故選A【點(diǎn)睛】本題考查了圓錐曲線(xiàn)綜合,分析題目,畫(huà)出圖像,熟悉拋物線(xiàn)性質(zhì)以及雙曲線(xiàn)的定義是解題的關(guān)鍵,屬于中檔題.2.C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).3.B【解析】
由函數(shù)解析式中含絕對(duì)值,所以去絕對(duì)值并畫(huà)出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對(duì)值函數(shù)圖象的畫(huà)法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.4.A【解析】
先求的展開(kāi)式,再分類(lèi)分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開(kāi)式的常數(shù)項(xiàng),從而求出的值.【詳解】展開(kāi)式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開(kāi)式中的系數(shù)問(wèn)題,其中對(duì)所取的項(xiàng)要進(jìn)行分類(lèi)討論,屬于基礎(chǔ)題.5.B【解析】
先求出直線(xiàn)l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線(xiàn)的離心率.【詳解】雙曲線(xiàn)1(a>b>0)的漸近線(xiàn)方程為y=±x,∵直線(xiàn)l的傾斜角是漸近線(xiàn)OA傾斜角的2倍,∴kl,∴直線(xiàn)l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì),考查向量知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.6.B【解析】
根據(jù)線(xiàn)面平行、線(xiàn)面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線(xiàn)面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線(xiàn),使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線(xiàn)線(xiàn)、線(xiàn)面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.7.A【解析】
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線(xiàn)為一條凹向橫軸的曲線(xiàn),由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)?,所以,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.8.C【解析】
過(guò)作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時(shí),取得最大值,取的中點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過(guò)作于,連接,顯然,則,且,又因?yàn)?,所以平面,所以,?dāng)最大時(shí),取得最大值,取的中點(diǎn),則,所以,因?yàn)椋渣c(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長(zhǎng)軸長(zhǎng)為10,焦距長(zhǎng)為8,所以的最大值為橢圓的短軸長(zhǎng)的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點(diǎn)睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.9.A【解析】
根據(jù)直線(xiàn):過(guò)雙曲線(xiàn)的一個(gè)焦點(diǎn),得,又和其中一條漸近線(xiàn)平行,得到,再求雙曲線(xiàn)方程.【詳解】因?yàn)橹本€(xiàn):過(guò)雙曲線(xiàn)的一個(gè)焦點(diǎn),所以,所以,又和其中一條漸近線(xiàn)平行,所以,所以,,所以雙曲線(xiàn)方程為.故選:A.【點(diǎn)睛】本題主要考查雙曲線(xiàn)的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10.B【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.11.C【解析】
根據(jù)準(zhǔn)線(xiàn)的方程寫(xiě)出拋物線(xiàn)的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線(xiàn)方程為,所以?huà)佄锞€(xiàn)方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線(xiàn)與準(zhǔn)線(xiàn)的方程.屬于基礎(chǔ)題.12.D【解析】
求出展開(kāi)項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問(wèn)題得解?!驹斀狻空归_(kāi)項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開(kāi)式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開(kāi)式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13..【解析】.14.【解析】
根據(jù)題意可得出,然后進(jìn)行補(bǔ)集的運(yùn)算即可.【詳解】根據(jù)題意知,,,,.故答案為:.【點(diǎn)睛】本題考查列舉法的定義、全集的定義、補(bǔ)集的運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】
把平方利用數(shù)量積的運(yùn)算化簡(jiǎn)即得解.【詳解】因?yàn)?,,,所以,∴,∴,因?yàn)樗?故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16.【解析】
由已知求,再利用和角正切公式,求得,【詳解】因?yàn)樗詂os因此.【點(diǎn)睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)為減函數(shù),為增函數(shù).(3)證明見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),求出切線(xiàn)方程,令得切線(xiàn)的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對(duì)求導(dǎo),得.因此.又因?yàn)椋郧€(xiàn)在點(diǎn)處的切線(xiàn)方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因?yàn)?,所以為減函數(shù).因?yàn)?,所以為增函?shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時(shí),,即.令,得,即.因此,當(dāng)時(shí),.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時(shí),,即.因此,即.令,得,即.當(dāng)時(shí),.因?yàn)椋?,所?所以,當(dāng)時(shí),.所以,當(dāng)時(shí),成立.綜上所述,當(dāng)時(shí),成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.18.(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類(lèi)討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時(shí)需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域?yàn)?,,①?dāng)時(shí),由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時(shí),由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時(shí),,所以在上單調(diào)遞增;④當(dāng)時(shí),由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時(shí),欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時(shí),,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因?yàn)?,所以,所?即,所以當(dāng)時(shí),成立.【點(diǎn)睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.19.(1)(2)證明見(jiàn)解析【解析】
(1)分類(lèi)討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡(jiǎn)后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)?,,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,,時(shí)取等號(hào),所以.【點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類(lèi)討論思想,屬于中檔題.20.【解析】
將直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的參數(shù)方程分別化為直角坐標(biāo)方程,聯(lián)立直角坐標(biāo)方程求出交點(diǎn)坐標(biāo),結(jié)合的取值范圍進(jìn)行取舍即可.【詳解】因?yàn)橹本€(xiàn)的極坐標(biāo)方程為,所以直線(xiàn)的普通方程為,又因?yàn)榍€(xiàn)的參數(shù)方程為(為參數(shù)),所以曲線(xiàn)的直角坐標(biāo)方程為,聯(lián)立方程,解得或,因?yàn)?,所以舍去,故點(diǎn)的直角坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化;考查運(yùn)算求解能力;熟練掌握極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化公式是求解本題的關(guān)鍵;屬于中檔題、常考題型.21.(1);(2)證明見(jiàn)解析.【解析】
(1)分類(lèi)討論求解絕對(duì)值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當(dāng)時(shí),等價(jià)于,該不等式恒成立,當(dāng)時(shí),等價(jià)于,該不等式解集為,當(dāng)時(shí),等價(jià)于,解得,綜上,或,所以不等式的解集為.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智能家居安防系統(tǒng)試用合同3篇
- 二零二五版辦公家具租賃與辦公空間智能化改造合同2篇
- 二零二五年度國(guó)際商務(wù)考察合同范本3篇
- 二零二五年度金融機(jī)構(gòu)貸款合同風(fēng)險(xiǎn)評(píng)估與管理指南3篇
- 二零二五年度某零售商與第三方支付平臺(tái)就支付服務(wù)合作合同2篇
- 敬老院二零二五年度土地承包及社區(qū)服務(wù)一體化合同3篇
- 二零二五年船舶通信設(shè)備維護(hù)船員聘用合同3篇
- 二零二五年智慧交通項(xiàng)目合作開(kāi)發(fā)合同范本3篇
- 二零二五年度搬家搬運(yùn)服務(wù)合同范本2篇
- 二零二五版導(dǎo)游人員旅游活動(dòng)組織聘用合同3篇
- 深圳2024-2025學(xué)年度四年級(jí)第一學(xué)期期末數(shù)學(xué)試題
- 中考語(yǔ)文復(fù)習(xí)說(shuō)話(huà)要得體
- 《工商業(yè)儲(chǔ)能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 醫(yī)院醫(yī)學(xué)倫理委員會(huì)章程
- 初中班主任案例分析4篇
- 公司7s管理組織實(shí)施方案
- Q∕GDW 12147-2021 電網(wǎng)智能業(yè)務(wù)終端接入規(guī)范
- 仁愛(ài)英語(yǔ)單詞默寫(xiě)本(全六冊(cè))英譯漢
- 公園廣場(chǎng)綠地文化設(shè)施維修改造工程施工部署及進(jìn)度計(jì)劃
- 塑料件缺陷匯總
評(píng)論
0/150
提交評(píng)論