![客戶關(guān)系管理中的數(shù)據(jù)挖掘技術(shù)外文翻譯_第1頁](http://file4.renrendoc.com/view/85a0718d93e6cc63396c7f43e77021b1/85a0718d93e6cc63396c7f43e77021b11.gif)
![客戶關(guān)系管理中的數(shù)據(jù)挖掘技術(shù)外文翻譯_第2頁](http://file4.renrendoc.com/view/85a0718d93e6cc63396c7f43e77021b1/85a0718d93e6cc63396c7f43e77021b12.gif)
![客戶關(guān)系管理中的數(shù)據(jù)挖掘技術(shù)外文翻譯_第3頁](http://file4.renrendoc.com/view/85a0718d93e6cc63396c7f43e77021b1/85a0718d93e6cc63396c7f43e77021b13.gif)
![客戶關(guān)系管理中的數(shù)據(jù)挖掘技術(shù)外文翻譯_第4頁](http://file4.renrendoc.com/view/85a0718d93e6cc63396c7f43e77021b1/85a0718d93e6cc63396c7f43e77021b14.gif)
![客戶關(guān)系管理中的數(shù)據(jù)挖掘技術(shù)外文翻譯_第5頁](http://file4.renrendoc.com/view/85a0718d93e6cc63396c7f43e77021b1/85a0718d93e6cc63396c7f43e77021b15.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
客戶關(guān)系管理中的數(shù)據(jù)挖掘技術(shù)外文翻譯畢業(yè)論文(設(shè)計)外文翻譯外文原文DataminingtechniquesforcustomerrelationshipmanagementChrisRygielski,Jyun-ChengWang,DavidC.YenAbstractAdvancementsintechnologyhavemaderelationshipmarketingarealityinrecentyears.Technologiessuchasdatawarehousing,datamining,andcampaignmanagementsoftwarehavemadecustomerrelationshipmanagementanewareawherefirmscangainacompetitiveadvantage.Particularlythroughdatamining?theextractionofhiddenpredictiveinformationfromlargedatabases?organizationscanidentifyvaluablecustomers,predictfuturebehaviors,andenablefirmstomakeproactive,knowledge-drivendecisions.Theautomated,future-orientedanalysesmadepossiblebydataminingmovebeyondtheanalysesofpasteventstypicallyprovidedbyhistory-orientedtoolssuchasdecisionsupportsystems.Dataminingtoolsanswerbusinessquestionsthatinthepastweretootime-consumingtopursue.Yet,itistheanswerstothesequestionsmakecustomerrelationshipmanagementpossible.Varioustechniquesexistamongdataminingsoftware,eachwiththeirownadvantagesandchallengesfordifferenttypesofapplications.Aparticulardichotomyexistsbetweenneuralnetworksandchi-squareautomatedinteractiondetectionCHAID.Whiledifferingapproachesaboundintherealmofdatamining,theuseofsometypeofdataminingisnecessarytoaccomplishthegoalsof''st(cdajtomerrelationshipmanagementphilosophy.22ElsevierScienceLtd.Allrightsreserved.Keywords:CustomerrelationshipmanagementCRM;Relationshipmarketing;Datamining;Neuralnetworks;Chi-squareautomatedinteractiondetectionCHAID;Privacyrights1.IntroductionAnewbusinesscultureisdevelopingtoday.Withinit,theeconomicsofcustomerrelationshipsarechanginginfundamentalways,andcompaniesarefacingtheneedtoimplementnewsolutionsandstrategiesthataddressthesechanges.Theconceptsofmassproductionandmassmarketing,firstcreatedduringtheIndustrialRevolution,arebeingsupplantedbynewideasinwhichcustomerrelationshipsarethecentralbusinessissue.Firmstodayareconcernedwithincreasingcustomervaluethroughanalysisofthecustomerlifecycle.Thetoolsandtechnologiesofdatawarehousing,datamining,andothercustomerrelationshipmanagementCRMtechniquesaffordnewopportunitiesforddebusinessestoactontheconceptsofrelationshipmarketing.Theoldmddfelsiofndde-build-se'llaproduct-orientedviewisbeingreplacedby“sell-build-redes”gnacustomer-orientedview.Thetraditionalprocessofmassmarketingisbeingchallengedbythenewapproachofone-to-onemarketing.Inthetraditionalprocess,themarketinggoalistoreachmorecustomersandexpandthecustomerbase.Butgiventhehighcostofacquiringnewcustomers,itmakesbettersensetoconductbusinesswithcurrentcustomers.Insodoing,themarketingfocusshiftsawayfromthebreadthofcustomerbasetothedepthofeachcustomerneeds.Theperformancemetricchangesfrommarketsharetoso-calledwalletshar”.Businessesdonotjustdealwithcustomersinordertomaketransactions;theyturntheopportunitytosellproductsintoaserviceexperienceandendeavortoestablishalong-termrelationshipwitheachcustomer.TheadventoftheInternethasundoubtedlycontributedtotheshiftofmarketingfocus.Ason-lineinformationbecomesmoreaccessibleandabundant,consumersbecomemoreinformedandsophisticated.Theyareawareofallthatisbeingoffered,andtheydemandthebest.Tocopewiththiscondition,businesseshavetodistinguishtheirproductsorservicesinawaythatavoidstheundesiredresultofbecomingmerecommodities.Oneeffectivewaytodistinguishthemselvesiswithsystemsthatcaninteractpreciselyandconsistentlywithcustomers.Collectingcustomerdemographicsandbehaviordatamakesprecisiontargetingpossible.Thiskindoftargetingalsohelpswhendevisinganeffectivepromotionplantomeettoughcompetitionoridentifyingprospectivecustomerswhennewproductsappear.Interactingwithcustomersconsistentlymeansbusinessesmuststoretransactionrecordsandresponsesinanonlinesystemthatisavailabletoknowledgeablestaffmemberswhoknowhowtointeractwithit.Theimportanceofestablishingclosecustomerrelationshipsisrecognized,andCRMiscalledfor.ItmayseemthatCRMisapplicableonlyformanagingrelationshipsbetweenbusinessesandconsumers.Acloserexaminationrevealsthatitisevenmorecrucialforbusinesscustomers.Inbusiness-to-businessB2Benvironments,atremendousamountofinformationisexchangedonaregularbasis.Forexample,transactionsaremorenumerous,customcontractsaremorediverse,andpricingschemesaremorecomplicated.CRMhelpssmooththeprocesswhenvariousrepresentativesofsellerandbuyercompaniescommunicateandcollaborate.Customizedcatalogues,personalizedbusinessportals,andtargetedproductofferscansimplifytheprocurementprocessandimproveefficienciesforbothcompanies.E-mailalertsandnewproductinformationtailoredtodifferentrolesinthebuyercompanycanhelpincreasetheeffectivenessofthesalespitch.Trustandauthorityareenhancediftargetedacademicreportsorindustrynewsaredeliveredtotherelevantindividuals.AllofthesecanbeconsideredamongthebenefitsofCRMCapGeminiconductedastudytogaugecompanyawarenessandpreparationofaCRMstrategy[1].Ofthefirmssurveyed,65%wereawareofCRMtechnologyandmethods;28%hadCRMprojectsunderstudyorintheimplementationphase;12%wereintheoperationalphase.In45%ofthecompaniessurveyed,implementationandmonitoringoftheCRMprojecthadbeeninitiatedandcontrolledbytopmanagement.Thus,itisapparentthatthisisanewandemergingconceptthatisseenasakeystrategicinitiative.Thisarticleexaminestheconceptsofcustomerrelationshipmanagementandoneofitscomponents,datamining.ItbeginswithanoverviewoftheconceptsofdataminingandCRM,followedbyadiscussionofevolution,characteristics,techniques,andapplicationsofbothconcepts.Next,itintegratesthetwoconceptsandillustratestherelationship,benefits,andapproachestoimplementation,andthelimitationsofthetechnologies.Throughtwostudies,weofferacloserlookattwodataminingtechniques:Chi-squareAutomaticInteractionDetectionCHAIDandNeuralNetworks.Basedonthosecasestudies,CHAIDandneuralnetworksarecomparedandcontrastedonthebasisoftheirstrengthsandweaknesses.Finalldyr,awweconclusionsbasedonthediscussion.Definition“Datamining”isdefinedasasophisticateddatasearchcapabilitythatusesstatisticalalgorithmstodiscoverpatternsandcorrelationsindata[2].Thetermisananalogytogoldorcoalmining;dataminingfindsandextractsknowledge“datanuggets”buriedincorporatedatawarehouses,orinformationthatvisitorshavedroppedonawebsite,mostofwhichcanleadtoimprovementsintheunderstandinganduseofthedata.Thedataminingapproachiscomplementarytootherdataanalysistechniquessuchasstatistics,on-lineanalyticalprocessingOLAP,spreadsheets,andbasicdataaccess.Insimpleterms,dataminingisanotherwaytofindmeaningindata.Dataminingdiscoverspatternsandrelationshipshiddenindata[3],andisactuallypartofalargerprocesscalled“knowledgediscovery”whichdescribesthestepsthatmustbetakentoensuremeaningfulresults.Dataminingsoftwaredoesnot,however,eliminatetheneedtoknowthebusiness,understandthedata,orbeawareofgeneralstatisticalmethods.Dataminingdoesnotfindpatternsandknowledgethatcanbetrustedautomaticallywithoutverification.Datamininghelpsbusinessanalyststogeneratehypotheses,butitdoesnotvalidatethehypotheses.TheevolutionofdataminingDataminingtechniquesaretheresultofalongresearchandproductdevelopmentprocess.Theoriginofdatamininglieswiththefirststorageofdataoncomputers,continueswithimprovementsindataaccess,untiltodaytechnologyallowsuserstonavigatethroughdatainrealtime.Intheevolutionfrombusinessdatatousefulinformation,eachstepisbuiltonthepreviousones.Table1showstheevolutionarystagesfromtheperspectiveoftheuser.Inthefirststage,DataCollection,individualsitescollecteddatausedtomakesimplecalculationssuchassummationsoraverages.Informationgeneratedatthisstepansweredbusinessquestionsrelatedtofiguresderivedfromdatacollectionsites,suchastotalrevenueoraveragetotalrevenueoveraperiodoftime.SpecificapplicationprogramswerecreatedforcollectingdataandcalculationsThesecondstep,DataAccess,useddatabasestostoredatainastructuredformat.Atthisstage,company-widepoliciesfordatacollectionandreportingofmanagementinformationwereestablished.Becauseeverybusinessunitconformedtospecificrequirementsorformats,businessescouldquerytheinformationsystemregardingbranchsalesduringanyspecifiedtimeperiod.Onceindividualfigureswereknown,questionsthatprobedtheperformanceofaggregatedsitescouldbeasked.Forexample,regionalsalesforaspecifiedperiodcouldbecalculated.Thankstomulti-dimensionaldatabases,abusinesscouldobtaineitheraglobalviewordrilldowntoaparticularsiteforcomparisonswithitspeersDataNavigation.Finally,on-lineanalytictoolsprovidedreal-timefeedbackandinformationexchangewithcollaboratingbusinessunitsDataMining.Thiscapabilityisusefulwhensalesrepresentativesorcustomerservicepersonsneedtoretrievecustomerinformationon-lineandrespondtoquestionsonareal-timebasis.Informationsystemscanquerypastdatauptoandincludingthecurrentlevelofbusiness.Oftenbusinessesneedtomakestrategicdecisionsorimplementnewpoliciesthatbetterservetheircustomers.Forexample,grocerystoresredesigntheirlayouttopromotemoreimpulsepurchasing.Telephonecompaniesestablishnewpricestructurestoenticecustomersintoplacingmorecalls.Bothtasksrequireanunderstandingofpastcustomerconsumptionbehaviordatainordertoidentifypatternsformakingthosestrategicdecisions?anddataminingisparticularlysuitedtothispurpose.Withtheapplicationofadvancedalgorithms,datamininguncoversknowledgeinavastamountofdataandpointsoutpossiblerelationshipsamongthedata.Datamininghelpbusinessesaddressquestionssuchas,“WhatislikelytohappentoBostonunitsalesnextmonth,andwhy?”Eachofthefourstageswererevolutionarybecausetheyallowednewbusinessquestionstobeansweredaccuratelyandquickly[4].Thecorecomponentsofdataminingtechnologyhavebeendevelopingfordecadesinresearchareassuchasstatistics,artificialintelligence,andmachinelearning.Today,thesetechnologiesaremature,andwhencoupledwithrelationaldatabasesystemsandacultureofdataintegration,theycreateabusinessenvironmentthatcancapitalizeonknowledgeformerlyburiedwithinthesystems.ApplicationsofdataminingDataminingtoolstakedataandconstructarepresentationofrealityintheformofamodel.Theresultingmodeldescribespatternsandrelationshipspresentinthedata.Fromaprocessorientation,dataminingactivitiesfallintothreegeneralcategoriesseeFig.1:Discovery?theprocessoflookinginadatabasetofindhiddenpatternswithoutapredeterminedideaorhypothesisaboutwhatthepatternsmaybe.PredictiveModeling?theprocessoftakingpatternsdiscoveredfromthedatabaseandusingthemtopredictthefuture.ForensicAnalysis?theprocessofapplyingtheextractedpatternstofindanomalousorunusualdataelements.Dataminingisusedtoconstructsixtypesofmodelsaimedatsolvingbusinessproblems:classification,regression,timeseries,clustering,associationanalysis,andsequencediscovery[3].Thefirsttwo,classificationandregression,areusedtomakepredictions,whileassociationandsequencediscoveryareusedtodescribebehavior.Clusteringcanbeusedforeitherforecastingordescription.Companiesinvariousindustriescangainacompetitiveedgebyminingtheirexpandingdatabasesforvaluable,detailedtransactioninformation.Examplesofsuchusesareprovidedbelow.Eachofthefourapplicationsbelowmakesuseofthefirsttwoactivitiesofdatamining:discoveryandpredictivemodeling.Thediscoveryprocess,whilenotmentionedexplicitlyintheexamplesexceptintheretaildescription,isusedtoidentifycustomersegments.Thisisdonethroughconditionallogic,analysisofaffinitiesandassociations,andtrendsandvariations.Eachoftheapplicationcategoriesdescribedbelowdescribessomesortofpredictivemodeling.Eachbusinessisinterestedinpredictingthebehaviorofitscustomersthroughtheknowledgegainedindatamining[5].2.3.1.RetailThroughtheuseofstore-brandedcreditcardsandpoint-of-salesystems,retailerscankeepdetailedrecordsofeveryshoppingtransaction.Thisenablesthemtobetterunderstandtheirvariouscustomersegments.Someretailapplicationsinclude[5]:Performingbasketanalysis?Alsoknownasaffinityanalysis,basketanalysisrevealswhichitemscustomerstendtopurchasetogether.Thisknowledgecanimprovestocking,storelayoutstrategies,andpromotions.Salesforecasting?Examiningtime-basedpatternshelpsretailersmakestockingdecisions.Ifacustomerpurchasesanitemtoday,whenaretheylikelytopurchaseacomplementaryitem?Databasemarketing?Retailerscandevelopprofilesofcustomerswithcertainbehaviors,forexample,thosewhopurchasedesignerlabelsclothingorthosewhoattendsales.Thisinformationcanbeusedtofocuscost?effectivepromotions.Merchandiseplanningandallocation?Whenretailersaddnewstores,theycanimprovemerchandiseplanningandallocationbyexaminingpatternsinstoreswithsimilardemographiccharacteristics.Retailerscanalsousedataminingtodeterminetheideallayoutforaspecificstore.2.3.2.BankingBankscanutilizeknowledgediscoveryforvariousapplications,including[5]:Cardmarketing?Byidentifyingcustomersegments,cardissuersandacquirerscanimproveprofitabilitywithmoreeffectiveacquisitionandretentionprograms,targetedproductdevelopment,andcustomizedpricing.Cardholderpricingandprofitability?Cardissuerscantakeadvantageofdataminingtechnologytopricetheirproductssoastoimizeprofitandminimizelossofcustomers.Includesrisk-basedpricing.Frauddetection?Fraudisenormouslycostly.Byanalyzingpasttransactionsthatwerelaterdeterminedtobefraudulent,bankscanidentifypatterns.Predictivelife-cyclemanagement?Datamininghelpsbankspredicteachcustomer'slifetimevalueandtoserviceeachsegmentappropriatelyforexample,offeringspecialdealsanddiscounts.譯文:客戶關(guān)系管理中的數(shù)據(jù)挖掘技術(shù)ChrisRygielski,Jyun-ChengWang,DavidC.Yen摘要近年來,技術(shù)的進(jìn)步讓關(guān)系營銷成為一個現(xiàn)實。如數(shù)據(jù)倉庫,數(shù)據(jù)挖掘和一系列管理軟件等技術(shù)已經(jīng)取得了客戶關(guān)系管理的新領(lǐng)域,在那里公司可以贏得競爭優(yōu)勢。特別是通過數(shù)據(jù)挖掘中從大型數(shù)據(jù)庫隱藏的預(yù)測信息的提取,企業(yè)可以識別有價值的客戶,預(yù)測客戶未來的行為,并使企業(yè)積極進(jìn)取,做出知識驅(qū)動的決策。通過數(shù)據(jù)挖掘移動可能超越過去的事件的分析,自動化是適應(yīng)于未來的分析,通常用歷史為導(dǎo)向的工具,提供了諸如決策支持系統(tǒng)。數(shù)據(jù)挖掘工具回答了在過去太費時追求的業(yè)務(wù)問題。然而,這些問題的答案使客戶關(guān)系管理成為可能。各種技術(shù)在數(shù)據(jù)挖掘軟件存在,不同類型的應(yīng)用程序都擁有自身的優(yōu)勢和挑戰(zhàn)。在神經(jīng)網(wǎng)絡(luò)和卡方自動交互檢測(CHAID)中存在一個特殊的二分法。雖然不同的方法于大量的境界數(shù)據(jù)挖掘,一些數(shù)據(jù)挖掘類型用于要完成的各項目標(biāo)的使用,對當(dāng)今的客戶關(guān)系管理理念來說是很必要的。22Elsevier科學(xué)有限公司保留所有權(quán)利。關(guān)鍵詞:客戶關(guān)系管理(CRM)關(guān)系營銷數(shù)據(jù)挖掘神經(jīng)網(wǎng)絡(luò)卡方自動交互檢測(CHAID)私隱權(quán)1.簡介今天,一個新的商業(yè)文化正在發(fā)展。因此,客戶關(guān)系經(jīng)濟(jì)學(xué)在根本途徑中不斷變化,與此同時企業(yè)都面臨處理這些變化要實施新的解決方案和戰(zhàn)略的需要。大規(guī)模生產(chǎn)和大規(guī)模營銷的概念,最先是在工業(yè)革命時被創(chuàng)造,現(xiàn)在正在被新的觀念所取代,其中客戶關(guān)系是中央企業(yè)的問題。今天的企業(yè)越來越通過對客戶生命周期分析關(guān)注客戶價值。這些工具和數(shù)據(jù)倉庫技術(shù),數(shù)據(jù)挖掘和其他客戶關(guān)系管(以客為本的觀點)正在取代由“設(shè)計?建造?銷售”(以產(chǎn)品為導(dǎo)向的觀點)的舊模式。傳統(tǒng)大規(guī)模營銷的過程在一對一營銷的新方法上被質(zhì)疑。在傳統(tǒng)的過程中,營銷的目標(biāo)是吸引更多客戶,擴(kuò)大客戶群。不過,考慮到獲取新客戶的成本,它可以更好地進(jìn)行與現(xiàn)有客戶的業(yè)務(wù)。在這樣做時,營銷重點從客戶群的寬度轉(zhuǎn)移到每個客戶的深度需求。該性能指標(biāo)從市場份額到所謂的“錢包份額”變化。企業(yè)不只是為了進(jìn)行交易而應(yīng)付客戶,他們把握了運用服務(wù)體驗銷售產(chǎn)品,并努力與每一位客戶建立長期合作關(guān)系的機(jī)會?;ヂ?lián)網(wǎng)的出現(xiàn),無疑有助于市場重點的轉(zhuǎn)變。由于網(wǎng)上信息變得更方便和豐富,消費者變得更加明智和成熟。他們從所有正在提供的信息中知道,他們要求最好的。為了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年搖滾音樂舞臺行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年手術(shù)臨床數(shù)據(jù)研究行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年堅果混合堅果粉便攜包裝行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年微波消融與熱灌注聯(lián)合微創(chuàng)治療行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年墻板生產(chǎn)智能控制系統(tǒng)行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年打印機(jī)大幅面打印行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年臺球俱樂部管理軟件行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 影視設(shè)備戰(zhàn)略咨詢咨詢批發(fā)考核試卷
- 辦公室企業(yè)文化建設(shè)路徑與實施考核試卷
- 住宿救助機(jī)構(gòu)志愿服務(wù)模式創(chuàng)新考核試卷
- 供應(yīng)鏈管理 課件 項目一 供應(yīng)鏈及供應(yīng)鏈管理認(rèn)知
- 2023年全國醫(yī)學(xué)博士外語統(tǒng)一考試(英語)
- 2024年中儲棉總公司招聘筆試參考題庫含答案解析
- 微整培訓(xùn)課件
- 2023年初級出版資格證考試:《初級出版專業(yè)實務(wù)》真題模擬匯編(共267題)
- SYT 0447-2014《 埋地鋼制管道環(huán)氧煤瀝青防腐層技術(shù)標(biāo)準(zhǔn)》
- 第19章 一次函數(shù) 單元整體教學(xué)設(shè)計 【 學(xué)情分析指導(dǎo) 】 人教版八年級數(shù)學(xué)下冊
- 【全】小學(xué)一年級下冊科學(xué)教學(xué)設(shè)計廣東版粵教版
- 電梯結(jié)構(gòu)與原理-第2版-全套課件
- 心理學(xué)在員工培訓(xùn)與發(fā)展中的應(yīng)用研究
- XX醫(yī)院按病種付費(DIP)工作實施方案(按病種分值付費(DIP)實施工作流程)
評論
0/150
提交評論