差分方程模型_第1頁
差分方程模型_第2頁
差分方程模型_第3頁
差分方程模型_第4頁
差分方程模型_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

差分方程模型第一頁,共四十一頁,2022年,8月28日9.1市場經(jīng)濟(jì)中的蛛網(wǎng)模型問題供大于求現(xiàn)象商品數(shù)量與價(jià)格的振蕩在什么條件下趨向穩(wěn)定當(dāng)不穩(wěn)定時(shí)政府能采取什么干預(yù)手段使之穩(wěn)定價(jià)格下降減少產(chǎn)量增加產(chǎn)量價(jià)格上漲供不應(yīng)求描述商品數(shù)量與價(jià)格的變化規(guī)律數(shù)量與價(jià)格在振蕩第二頁,共四十一頁,2022年,8月28日蛛網(wǎng)模型gx0y0P0fxy0xk~第k時(shí)段商品數(shù)量;yk~第k時(shí)段商品價(jià)格消費(fèi)者的需求關(guān)系生產(chǎn)者的供應(yīng)關(guān)系減函數(shù)增函數(shù)供應(yīng)函數(shù)需求函數(shù)f與g的交點(diǎn)P0(x0,y0)~平衡點(diǎn)一旦xk=x0,則yk=y0,xk+1,xk+2,…=x0,yk+1,yk+2,…=y0

第三頁,共四十一頁,2022年,8月28日xy0fgy0x0P0設(shè)x1偏離x0x1x2P2y1P1y2P3P4x3y3P0是穩(wěn)定平衡點(diǎn)P1P2P3P4P0是不穩(wěn)定平衡點(diǎn)xy0y0x0P0fg曲線斜率蛛網(wǎng)模型第四頁,共四十一頁,2022年,8月28日在P0點(diǎn)附近用直線近似曲線P0穩(wěn)定P0不穩(wěn)定方程模型方程模型與蛛網(wǎng)模型的一致第五頁,共四十一頁,2022年,8月28日~商品數(shù)量減少1單位,價(jià)格上漲幅度~價(jià)格上漲1單位,(下時(shí)段)供應(yīng)的增量考察,的含義~消費(fèi)者對需求的敏感程度~生產(chǎn)者對價(jià)格的敏感程度小,有利于經(jīng)濟(jì)穩(wěn)定小,有利于經(jīng)濟(jì)穩(wěn)定結(jié)果解釋xk~第k時(shí)段商品數(shù)量;yk~第k時(shí)段商品價(jià)格經(jīng)濟(jì)穩(wěn)定結(jié)果解釋第六頁,共四十一頁,2022年,8月28日經(jīng)濟(jì)不穩(wěn)定時(shí)政府的干預(yù)辦法1.使盡量小,如=0

以行政手段控制價(jià)格不變2.使盡量小,如=0靠經(jīng)濟(jì)實(shí)力控制數(shù)量不變xy0y0gfxy0x0gf結(jié)果解釋需求曲線變?yōu)樗焦?yīng)曲線變?yōu)樨Q直第七頁,共四十一頁,2022年,8月28日模型的推廣生產(chǎn)者根據(jù)當(dāng)前時(shí)段和前一時(shí)段的價(jià)格決定下一時(shí)段的產(chǎn)量。生產(chǎn)者管理水平提高設(shè)供應(yīng)函數(shù)為需求函數(shù)不變二階線性常系數(shù)差分方程x0為平衡點(diǎn)研究平衡點(diǎn)穩(wěn)定,即k,xkx0的條件第八頁,共四十一頁,2022年,8月28日方程通解(c1,c2由初始條件確定)1,2~特征根,即方程的根平衡點(diǎn)穩(wěn)定,即k,xkx0的條件:平衡點(diǎn)穩(wěn)定條件比原來的條件放寬了模型的推廣第九頁,共四十一頁,2022年,8月28日9.2減肥計(jì)劃——節(jié)食與運(yùn)動(dòng)背景多數(shù)減肥食品達(dá)不到減肥目標(biāo),或不能維持通過控制飲食和適當(dāng)?shù)倪\(yùn)動(dòng),在不傷害身體的前提下,達(dá)到減輕體重并維持下去的目標(biāo)分析體重變化由體內(nèi)能量守恒破壞引起飲食(吸收熱量)引起體重增加代謝和運(yùn)動(dòng)(消耗熱量)引起體重減少體重指數(shù)BMI=w(kg)/l2(m2).18.5<BMI<25~正常;BMI>25~超重;BMI>30~肥胖.第十頁,共四十一頁,2022年,8月28日模型假設(shè)1)體重增加正比于吸收的熱量——每8000千卡增加體重1千克;2)代謝引起的體重減少正比于體重——每周每公斤體重消耗200千卡~320千卡(因人而異),

相當(dāng)于70千克的人每天消耗2000千卡~3200千卡;3)運(yùn)動(dòng)引起的體重減少正比于體重,且與運(yùn)動(dòng)形式有關(guān);4)為了安全與健康,每周體重減少不宜超過1.5千克,每周吸收熱量不要小于10000千卡。第十一頁,共四十一頁,2022年,8月28日某甲體重100千克,目前每周吸收20000千卡熱量,體重維持不變?,F(xiàn)欲減肥至75千克。第一階段:每周減肥1千克,每周吸收熱量逐漸減少,直至達(dá)到下限(10000千卡);第二階段:每周吸收熱量保持下限,減肥達(dá)到目標(biāo)2)若要加快進(jìn)程,第二階段增加運(yùn)動(dòng),試安排計(jì)劃。1)在不運(yùn)動(dòng)的情況下安排一個(gè)兩階段計(jì)劃。減肥計(jì)劃3)給出達(dá)到目標(biāo)后維持體重的方案。第十二頁,共四十一頁,2022年,8月28日確定某甲的代謝消耗系數(shù)即每周每千克體重消耗20000/100=200千卡基本模型w(k)~第k周(末)體重c(k)~第k周吸收熱量~代謝消耗系數(shù)(因人而異)1)不運(yùn)動(dòng)情況的兩階段減肥計(jì)劃每周吸收20000千卡w=100千克不變第十三頁,共四十一頁,2022年,8月28日第一階段:w(k)每周減1千克,c(k)減至下限10000千卡第一階段10周,每周減1千克,第10周末體重90千克吸收熱量為1)不運(yùn)動(dòng)情況的兩階段減肥計(jì)劃第十四頁,共四十一頁,2022年,8月28日第二階段:每周c(k)保持Cm,w(k)減至75千克1)不運(yùn)動(dòng)情況的兩階段減肥計(jì)劃基本模型第十五頁,共四十一頁,2022年,8月28日第二階段:每周c(k)保持Cm,w(k)減至75千克第二階段19周,每周吸收熱量保持10000千卡,體重按減少至75千克。第十六頁,共四十一頁,2022年,8月28日運(yùn)動(dòng)t=24(每周跳舞8小時(shí)或自行車10小時(shí)),14周即可。2)第二階段增加運(yùn)動(dòng)的減肥計(jì)劃根據(jù)資料每小時(shí)每千克體重消耗的熱量(千卡):

跑步跳舞乒乓自行車(中速)游泳(50米/分)7.03.04.42.57.9t~每周運(yùn)動(dòng)時(shí)間(小時(shí))基本模型第十七頁,共四十一頁,2022年,8月28日3)達(dá)到目標(biāo)體重75千克后維持不變的方案每周吸收熱量c(k)保持某常數(shù)C,使體重w不變不運(yùn)動(dòng)運(yùn)動(dòng)(內(nèi)容同前)第十八頁,共四十一頁,2022年,8月28日9.3差分形式的阻滯增長模型連續(xù)形式的阻滯增長模型(Logistic模型)t,xN,x=N是穩(wěn)定平衡點(diǎn)(與r大小無關(guān))離散形式x(t)~某種群t時(shí)刻的數(shù)量(人口)yk~某種群第k代的數(shù)量(人口)若yk=N,則yk+1,yk+2,…=N討論平衡點(diǎn)的穩(wěn)定性,即k,

ykN?y*=N是平衡點(diǎn)第十九頁,共四十一頁,2022年,8月28日離散形式阻滯增長模型的平衡點(diǎn)及其穩(wěn)定性一階(非線性)差分方程(1)的平衡點(diǎn)y*=N討論x*的穩(wěn)定性變量代換(2)的平衡點(diǎn)第二十頁,共四十一頁,2022年,8月28日(1)的平衡點(diǎn)x*——代數(shù)方程x=f(x)的根穩(wěn)定性判斷(1)的近似線性方程x*也是(2)的平衡點(diǎn)x*是(2)和(1)的穩(wěn)定平衡點(diǎn)x*是(2)和(1)的不穩(wěn)定平衡點(diǎn)補(bǔ)充知識(shí)一階非線性差分方程的平衡點(diǎn)及穩(wěn)定性第二十一頁,共四十一頁,2022年,8月28日01的平衡點(diǎn)及其穩(wěn)定性平衡點(diǎn)穩(wěn)定性x*

穩(wěn)定x*不穩(wěn)定另一平衡點(diǎn)為x=0不穩(wěn)定第二十二頁,共四十一頁,2022年,8月28日01/2101的平衡點(diǎn)及其穩(wěn)定性第二十三頁,共四十一頁,2022年,8月28日初值x0=0.2數(shù)值計(jì)算結(jié)果b<3,xb=3.3,x兩個(gè)極限點(diǎn)b=3.45,x4個(gè)極限點(diǎn)b=3.55,x8個(gè)極限點(diǎn)0.41181000.4118990.4118980.4118970.4118960.4118950.4118940.4118930.4118920.4118910.379630.336620.272010.20000b=1.7k0.61540.61540.61540.61540.61540.61540.61540.61540.61540.61540.60490.63170.41600.2000b=2.60.82360.47940.82360.47940.82360.47940.82360.47940.82360.47940.48200.82240.52800.2000b=3.30.84690.43270.85300.44740.84690.43270.85300.44740.84690.43270.43220.85320.55200.2000b=3.450.81270.35480.88740.50600.82780.37030.88170.54050.81270.35480.39870.87110.56800.2000b=3.55第二十四頁,共四十一頁,2022年,8月28日倍周期收斂——x*不穩(wěn)定情況的進(jìn)一步討論單周期不收斂2倍周期收斂(*)的平衡點(diǎn)x*不穩(wěn)定,研究x1*,x2*的穩(wěn)定性第二十五頁,共四十一頁,2022年,8月28日倍周期收斂的穩(wěn)定性x1*x2*x*b=3.4y=f(2)(x)y=xx0第二十六頁,共四十一頁,2022年,8月28日倍周期收斂的進(jìn)一步討論出現(xiàn)4個(gè)收斂子序列x4k,x4k+1,x4k+2,x4k+3平衡點(diǎn)及其穩(wěn)定性需研究時(shí)有4個(gè)穩(wěn)定平衡點(diǎn)2n倍周期收斂,n=1,2,…bn~2n倍周期收斂的上界b0=3,b1=3.449,b2=3.544,…n,bn3.57x1*,x2*(及x*)不穩(wěn)定b>3.57,不存在任何收斂子序列混沌現(xiàn)象4倍周期收斂第二十七頁,共四十一頁,2022年,8月28日的收斂、分岔及混沌現(xiàn)象b第二十八頁,共四十一頁,2022年,8月28日9.4

按年齡分組的種群增長不同年齡組的繁殖率和死亡率不同建立差分方程模型,討論穩(wěn)定狀況下種群的增長規(guī)律假設(shè)與建模種群按年齡大小等分為n個(gè)年齡組,記i=1,2,…,n時(shí)間離散為時(shí)段,長度與年齡組區(qū)間相等,記k=1,2,…以雌性個(gè)體數(shù)量為對象第i年齡組1雌性個(gè)體在1時(shí)段內(nèi)的繁殖率為bi第i年齡組在1時(shí)段內(nèi)的死亡率為di,存活率為si=1-di第二十九頁,共四十一頁,2022年,8月28日假設(shè)與建模xi(k)~時(shí)段k第i年齡組的種群數(shù)量~按年齡組的分布向量預(yù)測任意時(shí)段種群按年齡組的分布~Leslie矩陣(L矩陣)(設(shè)至少1個(gè)bi>0)第三十頁,共四十一頁,2022年,8月28日穩(wěn)定狀態(tài)分析的數(shù)學(xué)知識(shí)

L矩陣存在正單特征根1,若L矩陣存在bi,bi+1>0,則P的第1列是x*特征向量,c是由bi,si,x(0)決定的常數(shù)且解釋L對角化第三十一頁,共四十一頁,2022年,8月28日穩(wěn)態(tài)分析——k充分大種群按年齡組的分布~種群按年齡組的分布趨向穩(wěn)定,x*稱穩(wěn)定分布,與初始分布無關(guān)。~各年齡組種群數(shù)量按同一倍數(shù)增減,

稱固有增長率與基本模型比較3)=1時(shí)~各年齡組種群數(shù)量不變第三十二頁,共四十一頁,2022年,8月28日

~1個(gè)個(gè)體在整個(gè)存活期內(nèi)的繁殖數(shù)量為1穩(wěn)態(tài)分析~存活率si是同一時(shí)段的xi+1與xi之比(與si的定義比較)3)=1時(shí)第三十三頁,共四十一頁,2022年,8月28日9.5差分方程模型

對于k階差分方程F(n;xn,xn+1,…,xn+k)=0(6-6)若有xn=x(n),滿足F(n;x(n),x(n+1),…,x(n+k))=0,則稱xn=x(n)是差分方程(6-6)的解,包含n個(gè)任意常數(shù)的解稱為(6-6)的通解,x0,x1,…,xk-1為已知時(shí)稱為(6-6)的初始條件,通解中的任意常數(shù)都由初始條件確定后的解稱為(6-6)的特解.若x0,x1,…

xn+k-1,已知,則形如xn+k=g(n;xn,xn+1,…,xn+k-1)的差分方程的解可以在計(jì)算機(jī)上實(shí)現(xiàn).第三十四頁,共四十一頁,2022年,8月28日若有常數(shù)a是差分方程(6-6)的解,即F(n;a,a,…,a)=0,則稱

a是差分方程(6-6)的平衡點(diǎn).

又對差分方程(6-6)的任意由初始條件確定的解

xn=x(n)都有xn→a(n→∞),則稱這個(gè)平衡點(diǎn)a是穩(wěn)定的.

一階常系數(shù)線性差分方程

xn+1+axn=b,(其中a,b為常數(shù),且a≠-1,0)的通解為xn=C(-

a)n+b/(a+1)

易知b/(a+1)是其平衡點(diǎn),由上式知,當(dāng)且僅當(dāng)|a|<1時(shí),b/(a+1)是穩(wěn)定的平衡點(diǎn).第三十五頁,共四十一頁,2022年,8月28日二階常系數(shù)線性差分方程xn+2+axn+1+bxn=r,其中a,b,r為常數(shù).

當(dāng)r=0時(shí),它有一特解x*=0;

當(dāng)r≠0,且a+b+1≠0時(shí),它有一特解x*=r/(a+b+1).

不管是哪種情形,x*是其平衡點(diǎn).設(shè)其特征方程2+a+b=0的兩個(gè)根分別為=1,=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論