專轉(zhuǎn)本數(shù)學(xué)模擬試題與解析(完整版)doc資料_第1頁
專轉(zhuǎn)本數(shù)學(xué)模擬試題與解析(完整版)doc資料_第2頁
專轉(zhuǎn)本數(shù)學(xué)模擬試題與解析(完整版)doc資料_第3頁
專轉(zhuǎn)本數(shù)學(xué)模擬試題與解析(完整版)doc資料_第4頁
專轉(zhuǎn)本數(shù)學(xué)模擬試題與解析(完整版)doc資料_第5頁
已閱讀5頁,還剩92頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

與解析(完整版)料江蘇年普通高校專轉(zhuǎn)本統(tǒng)一試模擬)解析高等數(shù)學(xué)注意事項(xiàng):考生務(wù)必將密封線內(nèi)的各項(xiàng)填寫清楚。考生必須要鋼筆或圓珠筆將答案直接寫在在草稿紙上無。本小題,滿分分考試時(shí)分。、題(本共6小,每小題分滿分.在每小題給出的四個(gè)選項(xiàng)中,只有項(xiàng)符合題目要求,請把所選項(xiàng)前的字母填在題后的括號(hào)內(nèi))1設(shè)函數(shù),為

的)A極大值點(diǎn)、極值

B、值、拐坐2、,則

于(A、1B、1C、3、連線A、、

和線,B、、

與軸圍成的圖形的面積是)4、與三坐標(biāo)夾角均相的一個(gè)單位向量A、1,)、(,,)5設(shè)區(qū)域,則

B、(,,)、(,,)()6、下數(shù)的)A、

B、

、、

、二、填空題本共小題每小題分分24分)7、極限8、函數(shù)

連續(xù)則積設(shè)量,,,則微方冪數(shù)

的通是收斂為、答題(本共小題每小題分滿分64分)13、極。14知

由程

確定求。15、求不定積。、設(shè),。17、設(shè)區(qū)

為周

與軸第象限所圍部分,。、知數(shù),其中

具有二連續(xù)偏導(dǎo)數(shù),求。將函數(shù)

展為冪數(shù)并出斂區(qū)。、求經(jīng)過,且垂直于直線,又與平面平行直線程、合題(每題分,分21、曲該線原的線;由切與及圍圖的面積;求)中平面圖形繞軸旋轉(zhuǎn)一周所成的旋體的積、設(shè)數(shù)

可導(dǎo)且滿方求。、證題每題分共)23、設(shè)

上連續(xù),求證:,并利用上結(jié)果計(jì)積。24、函

上二可導(dǎo),,。證明(1任,(2)存在,使。江蘇年普通高校專轉(zhuǎn)本統(tǒng)一試模擬(三)高等數(shù)學(xué)、題(本共6小,每小4,分24分在每小題給出的四個(gè)選項(xiàng)中,有項(xiàng)符合題目要求,請把所選項(xiàng)前的字母填在題后的括號(hào)內(nèi))1設(shè)函數(shù),,

的)A極大值點(diǎn)、極值

B、值、拐坐解:該題考察函數(shù),,則的小值點(diǎn),故本題答案B(極判別第二充分條件)

為2設(shè)則

等()A、1B、1C、解:題察常用函高導(dǎo)公式,階數(shù)的求法主要有以下幾種()歸納推數(shù)運(yùn)算萊布尼式利用函在一點(diǎn)冪展開式的唯性,,則,此出。因?yàn)椋?,?/p>

代入可,本答案A3、連線

和線,

與軸圍成的圖形的面積是)A、、

B、、故案故案解:題察定積分幾意:曲梯面的代數(shù)和故題案選A4、與三坐標(biāo)夾角均相的一個(gè)單位向量A、1,)、(,,)

B、,,)、(,,)解析:題考察單位向與方向余弦的性質(zhì)記夾角為,則單位向量,由

得,故本題答5設(shè)區(qū)域,則A、B、

、

()

、解析本考二積的何意:頂體體;被函數(shù)時(shí)為區(qū)域的面積本題區(qū)是于半分為和。其積為大圓與小圓積差故本題答案選6、下數(shù)的)A、、

B、、解析:該題考級(jí)數(shù)的斂質(zhì)、級(jí)收的必要件

級(jí)數(shù)。答記住交

當(dāng)

當(dāng)

時(shí)收,時(shí)發(fā)。時(shí)絕對斂時(shí)條件斂

時(shí)發(fā)。二、空本共小題每小題分滿分分、限解析:求極限時(shí),先判斷極限類型,若

型可以直接使用羅比達(dá)法則,其余類可以轉(zhuǎn)為

型。羅比達(dá)法則極限的好處主要兩方面一是通過導(dǎo)降階,二是通過導(dǎo)將難求極限的極限形式轉(zhuǎn)變?yōu)槿菀浊髽O限的形式。不過,在求極限時(shí)應(yīng)靈活使用多種法,特別是無窮小量或是無窮大量階的比較,使用等價(jià)無窮小或是等價(jià)無窮大的目的是將數(shù)轉(zhuǎn)為的形式,方判別數(shù)本題“型,利用第二重要極。。、數(shù)

連續(xù)則解:分段函數(shù)在分段點(diǎn)處的極限、連續(xù)性與可導(dǎo)性,若分段點(diǎn)的左右兩側(cè)的表達(dá)式互不相,必使用定義右別論。題需照連續(xù)性義論可。在

連續(xù),價(jià),即,左右極均等于函數(shù)值即解。、分解:本題考查不定積分的定義,湊微分法以及定積分的計(jì)算。設(shè)向量,,則解:該題考察量的基本運(yùn)算數(shù)量積運(yùn)算。兩量數(shù)量積為對應(yīng)量乘積之和,結(jié)果是一個(gè)數(shù)。因?yàn)?,代入?jù)得。、方

的通是解析特征程解得原程的通解。冪級(jí)數(shù)

收斂為解析:對于冪級(jí)數(shù),收斂徑,斂區(qū)間為。將

代入級(jí)數(shù)體考。冪級(jí)數(shù)

缺少奇次(次項(xiàng))或上極限存(不是無窮,則時(shí)

當(dāng)常量轉(zhuǎn)化為常項(xiàng)級(jí)數(shù)理。本,所以,時(shí),級(jí)數(shù)

發(fā)散,數(shù)

收斂故收域。于冪數(shù)

只作變量代

即。三解答題本共小題,每小分分分)、求極。解析:極限時(shí),先判極限類型,型轉(zhuǎn)化為理,一先將其有理化。原=

型對無理式問題的==。、已知

由程

確定求。解:隱函數(shù)的導(dǎo)數(shù)是??嫉囊粋€(gè)內(nèi)容,它的本質(zhì)實(shí)際上是復(fù)合函數(shù)的導(dǎo)數(shù)問題。一般隱函數(shù)很難甚至不可能顯化。其導(dǎo)方法是方程(等式)兩邊對求導(dǎo)數(shù)將看成的數(shù)(間變)。將

代,到。程兩對求導(dǎo),得,,。15求不定積分。解:該題使用第二類換元法,作三角代令,原==、設(shè),。解析:題考查定積分換元法與分段函數(shù)積分。原17、區(qū)

為周

與軸第象限所圍部分,。解析:重積分問題是多“專轉(zhuǎn)同的難點(diǎn)。首先要理解二重積分幾何意義,特別是對稱簡化積分計(jì)算。首要畫出積分區(qū)域,然后根據(jù)被積函數(shù)的特點(diǎn)與區(qū)域的形狀選擇適當(dāng)?shù)淖鴺?biāo)以及適當(dāng)?shù)姆e分順序。一般當(dāng)被積函數(shù)形,域狀為圓、環(huán)、扇(環(huán))等,往往使極標(biāo)算將圓周原=

化極坐標(biāo)方。、知數(shù),其中

具有二連續(xù)偏導(dǎo)數(shù),求。解析該型幾每必。需認(rèn)掌,清數(shù)復(fù)關(guān)系解析:該題型是乎每年必考。需認(rèn)真掌。第一步變的關(guān)系網(wǎng)圖其,分別示第二:尋找對應(yīng)的路,算的過程可以總結(jié)為路中用乘,用”將函數(shù)

展為并出斂區(qū)。解析:體方法前面已詳細(xì)論述,這里不贅述。。、經(jīng)點(diǎn),且垂直于直線,又與平面平行直線程。解析求直方,基本方法使用稱。求出直線的一定和方向。解:設(shè)所求直線的方向?yàn)閯t,,以?。健9是缶€程為。、合題(每題分,分21、曲線該線原的線;由切與及圍圖的面積;求)中平面圖形繞軸旋轉(zhuǎn)一周所成的旋體的積。解析:本題考查數(shù)的幾何意義,積分的何應(yīng)用,重點(diǎn)掌握。(1)設(shè)切為數(shù)幾何義,應(yīng)有,即,于是切點(diǎn)為為(2所求面積為;(3所求旋轉(zhuǎn)體為。22、設(shè)數(shù)

可導(dǎo)且滿方求。解:積分變上函數(shù)的求導(dǎo)問題??疾?,注意弄對那個(gè)量求導(dǎo)特別是積函數(shù)中既有又含有情形。種問題一般總是先求導(dǎo)再說。,,.又,,。、證題每小題9分共1)23、設(shè)

上連續(xù),求證:,并利用上結(jié)果計(jì)積。解:有定積的抽象恒等式的證明,一般采用換元法,難點(diǎn)是如何做出代換,優(yōu)先考慮函數(shù)結(jié)構(gòu)形式對應(yīng),兼顧積分上下限。=故。24設(shè)函數(shù)

上二可導(dǎo),,。證明(1任,(2)存在,使。解析:(1)若存在,使得,由羅爾定理,存在,得,再使用羅爾定理,存,使得矛,所對任意,有。(2)令,為,所以由爾定理,存在,使得,而,故注意到,于。師大附中年高試學(xué)事1.本(題卷()分共間答,2第時(shí)上如干本3.案本第卷選擇題共60分一、選擇題(本大題共小題,每題分,共在每小給出的個(gè)選項(xiàng),只有一項(xiàng)符合題要求的,B={0,1,2,3},則∩B=()A.{-1,0,1}B.{0,1}C.{-1,0},則復(fù)數(shù)的模為()A.5B.

C.

D.3.在初的高教師信技術(shù)培訓(xùn)中,經(jīng)統(tǒng)計(jì),哈爾濱市高中教的培訓(xùn)成績X~N(85,9),則從哈市高中教師任選一位教師,他的培訓(xùn)成績大于的概率為()4.已知等數(shù)列{a}的前項(xiàng)和為,若=1,S=3S,則=nn11056A.2

B.,則

C.4)

D.1A.

B.

C.-

D.滿足:,,則)A.135°B.120°D.45°2支211111個(gè)零2支211111個(gè)零小次1x,341下面是某幾體的三視圖,則該幾何體的積()A.B.C.D.已知數(shù)滿足≤1≤6≤1,函數(shù)f(x)=x在值的率為)A.B.C.D.執(zhí)下面的程序框圖,若輸入,值分別為,,為,則的取值范圍為()≤≤15C.15<m≤31D.31<m63第圖

第題圖1

,別雙線:

(a>0,的、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)雙線的右F|,eq\o\ac(△,1)PF面為且該雙的漸互直雙線的程為()A.B.C.D.1

BD中,E為棱中點(diǎn)過點(diǎn)B且平面BE平的正方體的截面)A.5B.C.D.6,數(shù)

有四的從依x,x,x,x的取值圍為A.,B..(4,C.

[4+∞)

D.

(一,二填空題本題共4小題,每題5分,共20分過物線Cx=4焦點(diǎn)的直線與拋物線于AB兩,若弦點(diǎn)到軸離為,則|=;設(shè)xy滿足約束條件,則為15.已滿15.已滿,數(shù)C=則前…+C知列足a=記,}的和216.已定在上的數(shù)f(x)足:①,②在[,∞上為增函數(shù);若x∈

,1]時(shí),f(ax)<f(x-1)成立,實(shí)數(shù)的范為.三、解答題(共70分解答應(yīng)寫出字明、明程演算驟第17~21題為必考題第22,23題選題.17.(小題滿分12分)已知,,,數(shù),線(I)求函數(shù)的析式及單調(diào)遞增區(qū)間;

是數(shù)f(x)圖像的一對稱(Ⅱeq\o\ac(△,在)ABC中,知f(A)=0a=,b邊18.(本題滿分12分)哈師附高學(xué)統(tǒng)甲乙兩班一數(shù)分滿150分)個(gè)級(jí)20名同,有甲、兩班本次考試學(xué)分?jǐn)?shù)如下列莖葉所示:根據(jù)莖圖甲乙兩班同數(shù)分的中數(shù)并乙班同學(xué)分的率分直圖充整(Ⅱ)根據(jù)莖葉圖比較在一模考試,甲、乙兩班同學(xué)數(shù)學(xué)分的平均水平和分?jǐn)?shù)分散程(不求計(jì)算出具體值給出結(jié)即;(Ⅲ)若規(guī)定分?jǐn)?shù)在[100,的成績?yōu)楹?,?shù)在120,的績?yōu)閮?yōu)秀,從甲、乙兩班成績?yōu)閮?yōu)秀的同學(xué)中,按照各班成為優(yōu)秀的同學(xué)人數(shù)占兩班總的優(yōu)秀人數(shù)的比例分層抽樣,共選1212數(shù)線角和12數(shù)線角和1212位同學(xué)參加數(shù)學(xué)提優(yōu)培訓(xùn),求這位學(xué)含乙所有分的學(xué)的概率19.(本題滿分分已等腰,SA=AB=4SA⊥C,D分為B,A的中點(diǎn),'沿折的置SA=,段SB的中點(diǎn)為.(I)求證CE平面;(Ⅱ求二角的弦值.本題分)已知圓:

(a>b>0)的右焦為,,點(diǎn)為橢圓上動(dòng)點(diǎn)若PF的最值和最值分別為.求橢圓的方程;(Ⅱ設(shè)過原點(diǎn)的線與圓交于,Q兩點(diǎn),直線OPPQOQ的率成比數(shù),求eq\o\ac(△,列)OPQ面最值21.(本題滿分分已知數(shù)f(x)=(1-ax)ex+b點(diǎn)(1,f(1))的方是求的值及函數(shù)大值;(Ⅱ若實(shí)數(shù),y滿足x-1(x>0).:0<y<x;若,證明請考在第、23題中選一做答如果做,按所的第題計(jì),做時(shí)請清題本題滿分10分選修—:坐系與參數(shù)程在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非軸軸相單度極標(biāo)系,線的為:若線參數(shù)方程為程;(Ⅱ若曲線參方程:

為參求直方程的通方(t為數(shù),A(0,,曲線與曲線點(diǎn)為,Q求

取值圍.23.(本題滿分分選修4-5:不等式講已函數(shù)f(x)=|2x+b|+|2x-b|.若,解等f(x)>4;(Ⅱ不等式f(a)>|對任意數(shù)恒立求值圍)、選題號(hào)123456789101112案DABABABBCA、填題13.12;14.-215.;16.,2)、解題17.解:()是數(shù),

的增區(qū)為()方法)在

中,余弦理(方二)由1)知在:解1)甲班數(shù)學(xué)分的中位數(shù):乙班數(shù)分?jǐn)?shù)的中位數(shù):()班生數(shù)考試數(shù)平均水平高甲班生學(xué)考分?jǐn)?shù)平均平;甲班學(xué)生數(shù)學(xué)考分?jǐn)?shù)的分散程度于乙班生數(shù)學(xué)考分?jǐn)?shù)的分散程度.()有頻率分布直方圖可知:甲、乙兩班數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)分別為10、14,若中分層抽樣選出人,應(yīng)從甲、乙兩班各選出、7人,設(shè)選出的人中有、乙兩班的所有140分上的學(xué)為件A則所以選的人中有、乙兩班的所有140分上的同學(xué)的概率.19解(1)證明:取

中連又四邊形

為平行邊(1

面面面面面面面又兩兩互垂如圖示別則

軸立空間直角坐標(biāo)設(shè)面面向量分別為則取取二角的面角的余弦為20.解()由已知得:圓方為()設(shè)易知,),設(shè)由件知:聯(lián)(1)(2)得:點(diǎn)

到線距且所以當(dāng)

時(shí):21.解:(Ⅰ),由題有解故,,,為函.故當(dāng)(Ⅱ)明:(?。?,由Ⅰ知所以

所以

為增函,又為(ⅱ)一:

,以,(過程)由1)知法二:,構(gòu)造數(shù),,因,所以,即

時(shí),

為函數(shù),所,故22.()曲曲

的直坐方為:的普方程為:()

的參數(shù)程:

的方:

得:由意義可:23.解:1)所以解為:(2)所以:2021學(xué)1202B

1(A)(B)(D)2(B)(C)(D)33(A)(B)(D)41《九術(shù)記了“竹抵”問:今竹丈,末折抵,去尺問折者幾?思根子,原丈1丈=10尺,現(xiàn)風(fēng)折斷尖竹竹尺問折斷尺(A)(B)(C)52,

則出的)(A)(B)(D)6.將函數(shù)

的象上點(diǎn)坐變?yōu)樵瓉淼模?,再往上平移個(gè)位得圖象應(yīng)的函數(shù)面?zhèn)€區(qū)間上遞()(B)(C)(D)7.設(shè)函數(shù)若則圍是()(B)(C)(D)8.已知線

的一個(gè)焦點(diǎn),其關(guān)線條漸近線對稱點(diǎn)另一條漸近線上,則雙曲線()(A)(B)(C)(D)9某四的三視圖所示,正視圖、都是腰為的等腰直角側(cè)圖是為的正形則四體體是()(A)(B)(D)已列的項(xiàng)為,則)(B)(D)

圖.在,,點(diǎn)為,,則()(A)(B)(D)12.已知線

的點(diǎn),動(dòng),點(diǎn)為則的最小值是()(A)(B)(C)(D)二、填空:大題共4小題,每題分。.線

處切線程____.14若變量,件,則點(diǎn)點(diǎn)最距離為.?dāng)?shù)列

對意的

有,若,則..函數(shù)

對意的,數(shù)

是函數(shù),當(dāng)

時(shí),

在間

內(nèi)的有點(diǎn)之和為.三、解答題:共分解應(yīng)寫出文說、證明過或算驟。第17~21題為必考題,每個(gè)試題生都必。、題為選考,考生根據(jù)要求作答。(一)必考題:60分17.本滿分分)已知,別為eq\o\ac(△,分)個(gè)角,

對,且.求角;若eq\o\ac(△,且)面積為..本滿分分)如圖,直角,,,是點(diǎn),沿將至且.()求棱錐;()求:面面.

邊的中.本滿分分)為了解春季晝夜差大小與某種子芽多少之間的關(guān),現(xiàn)在月份的天中機(jī)挑選了天進(jìn)行研究,分記了每天夜溫差每天每顆子浸泡后的發(fā)數(shù),得如下表:日期溫差/℃

月日日日日日發(fā)芽數(shù)y顆(這天任選天,記發(fā)芽的種子數(shù)分別為率;

均不小2”的概()線回歸程得的估數(shù)與月份選天檢驗(yàn)數(shù)據(jù)的誤均超顆,則認(rèn)為得到的線性回歸方程是可靠的請據(jù)月日月日與月日這三天的數(shù)據(jù),出于線性回歸方程得的線性回方程是否可靠?參考公:

,參考數(shù):.本滿分分)拋線(拋線的程;

的點(diǎn)為點(diǎn)

滿足()點(diǎn)于當(dāng)

時(shí)求直線.本滿分分)已函數(shù).(論函數(shù);(對任意有

恒立,求實(shí)數(shù)()選題共分。請第題任一題答,如果多做,則按所做的第一題。.本滿分分)修-坐標(biāo)與方程在平面直角坐標(biāo)系線的參數(shù)方程為(且),以,,建立極坐標(biāo)系,直線為.若線有個(gè)公點(diǎn)求;,線點(diǎn)且求eq\o\ac(△,,)eq\o\ac(△,)的面積最大值..小題分分選修:等式選講已函數(shù).(不式

的集;()設(shè),明:.(二)》擬試答案五)一、選擇題1~10小題,每題分共.在每小題給的四個(gè)選項(xiàng)中只有一項(xiàng)是符合題目要求的,把所選項(xiàng)前的母填在后的括號(hào).1.當(dāng)0,是的(..高階的無窮小量.價(jià)無窮小量同但等的窮量.低階的無窮小量2.函?(sinx)=sinx,?ˊ(x)等于(..2cosx.-2sinxcosx.%.2x3.下結(jié)論正確的是(..?dāng)?shù)的導(dǎo)存在點(diǎn),不是?(x)的極值點(diǎn).x函?(x)的駐,則必?(x)的極點(diǎn)C.函?(x)在點(diǎn)處有極,且ˊ(x)在,有ˊ(x)=0D.函?(x)在點(diǎn)處續(xù)則ˊ(x)定存在4...exdxexInxdx5.?dāng)?shù)區(qū)(-1,1)內(nèi)(..調(diào)減少.調(diào)增加.增不減.增有減6...-F(x)..2F(x)7.設(shè)?(x)二階可導(dǎo),且?,則有(..?(1)=0.?(1)是極值.?(1)極值.點(diǎn)(1,?(1))拐點(diǎn)8..?(3)-?(1).?(9)-..1/3[?(9)-?(3)]9...2xy+1..10設(shè)件B的.5,P(AB)=04則件發(fā)生條件下,件生的條概率|B)=(.........二、填題11~20小,每題分共分.把答案填在題中橫線上.11..當(dāng)0時(shí)1-cos戈與是無量則..設(shè)y=in(x+cosx),則ˊ....設(shè)?(x)的函數(shù)是2x,則?(x)的體原函數(shù)是...線y=xlnx-x在處的線方程__________...2128題,共分.解答應(yīng)寫出推、演算驟.21.22(8)5326(10)y=4xx=2x=2

27(10)z=z(xy)ez-x

+y

+x+z=028(10y=xy=lnxy=0y=1

yV1C2Cx-ln(1+x)ln(1+x)-x否則將導(dǎo)錯(cuò)論類似類(可也填空例如當(dāng)0x-In(1+x)x1/223要使式存則必須k-2=0k=2當(dāng)0x-in(1壩2C2D要函念復(fù)合函導(dǎo)種1先元?(x)表達(dá)再導(dǎo)sinx=u則(x)=u?ˊ(u)=2u?ˊ(x)=2x法將?(sinx)為?(x),u=sinx復(fù)合函數(shù)直接求導(dǎo)再用換元法寫成ˊ(x)的形.等兩邊對求導(dǎo)得?ˊ(sinx)·COSx=2sinxCOSxˊ(sinx)=2sinx.用換x,得?ˊ(x)=2x所選.請生注:這題是基本題型之一也是歷考試經(jīng)常出現(xiàn)的.熟練地掌握基本概念及題基本方法,能較大幅度地提高生成績.為便于考生對有關(guān)題型有個(gè)較全面的了解和握,特歷的部分試題中的相關(guān)部分摘錄如下(2004年設(shè)數(shù)(cosx)=1+cosx,?.答案為)3.答案】應(yīng)C.【析】本考查的主要知識(shí)點(diǎn)是數(shù)在一點(diǎn)處續(xù)、的概念,駐點(diǎn)與值點(diǎn)概念的相互關(guān)系熟練地掌握這些概念是非重要.要否定一個(gè)命題的佳方是舉一反例,例如:y=|x|x=0處有小且,在x=0不,除和D.y=x,它點(diǎn)但不是它極值點(diǎn),排除所命C確.4.答案】應(yīng)A.【析本可用dy=yˊdx求得選項(xiàng)為也可以直接求微到.5.答案】應(yīng)D.【解析】本題需先求出函數(shù)的駐點(diǎn),用判是極大值點(diǎn)是值點(diǎn)若是值點(diǎn),則在極值點(diǎn)側(cè)的ˊ必異,而進(jìn)一步確選項(xiàng).因?yàn)楱@=e-1,令ˊ=0,得.又=e>0x(-1,1)且|=1>0所x=0為小值,在的、兩側(cè)的函數(shù)為到,x(-11),有有,以選.6.答案】應(yīng)B.【析】用換元法將與系來再確定選.7.答案】應(yīng)B.【提極的分確定選項(xiàng).8.答案】應(yīng)選.【解】題查知點(diǎn)定積的元.題以接元或湊分.9.答案】應(yīng)選.【解析】用二元數(shù)求偏導(dǎo)公式計(jì)即可.10【答案】應(yīng)選.【析利條件概率式算可.、填題【答案】應(yīng)填.【解】用要限和限存的要件可知.12【答案】應(yīng)填.【析】根據(jù)同階無窮小量的概念,并利用洛必達(dá)法則確定值.13.【解析】用復(fù)合函數(shù)求導(dǎo)公式算..答案】應(yīng)填..【解】用函求公或直對x求導(dǎo).將等式邊x求(此y=y(x))得16.【解】查的識(shí)是導(dǎo)數(shù)和函的概.17.18【答案】應(yīng)填x+y-e=0.【解】率再由切線與法互相垂直求出法線率,從而得到線方程.19【答案】.【提】函數(shù)在對稱區(qū)上積的性.20.【提】寫成·e則很易求結(jié)果.、解題本題考查的是相關(guān)性質(zhì).【解】變限的必法則解.22.本考查的識(shí)是復(fù)合數(shù)求導(dǎo)計(jì)算.【解】數(shù)求導(dǎo)公式計(jì)算.23本考的知識(shí)點(diǎn)不積的公法湊分積分法.】數(shù)子為二項(xiàng)差一般情況下要慮將它分二項(xiàng)之差積.另外于被函中含有根式所以應(yīng)慮用三角代去根的法進(jìn)行積分.解法解法三代去根.24.本題考查的識(shí)點(diǎn)是反常積分的計(jì)算.【解】配方后用積分式計(jì)算.25.本題考查的識(shí)是古典型概率計(jì)算.26本題查知點(diǎn)利導(dǎo)研函數(shù)性方.【解】本的鍵正列函的關(guān)式再其大.解圖示設(shè)A點(diǎn)為x,y),則AD=2-x,矩形面積27.題考查的知識(shí)是二元函全微分的求法.利用公式法求導(dǎo)的關(guān)鍵是需構(gòu)造輔助函數(shù)yz)=e-x+y+x+z然將等式兩邊分別對y,z導(dǎo).考生一定注意:對求時(shí)y,z視為常數(shù),而對或z導(dǎo),外個(gè)變同也為常數(shù).即公法時(shí)輔函數(shù),,z)中三個(gè)變量均視為自變量.解法接求導(dǎo)法.等兩邊對求導(dǎo)得解法公法.解法分法.對等兩求分三種法各優(yōu)劣,但公式法更容易理解和掌握.建議考生根據(jù)自己的熟悉程度,牢記一種方.28.題考查的知識(shí)點(diǎn)是曲邊梯形面積的求法及旋轉(zhuǎn)體.【解】首目曲線方程畫出封閉的平面圖形,然此特點(diǎn)選擇x積分對,積分.選的原則是:使得積分計(jì)算盡可能簡單或容易算出.本題如果選擇x積分則有這顯然比y積分煩.在求旋轉(zhuǎn)體的體積時(shí)一定要注意是繞x軸還繞軸轉(zhuǎn).歷年的試題均是繞x軸轉(zhuǎn),而本題是求旋轉(zhuǎn)的旋轉(zhuǎn)體的體積.旋體體計(jì)算中最易現(xiàn)錯(cuò)誤在歷年的是解,如圖2-7-2示陰部分,則陰部的面積150100642414

A4B3C2D24x2+x3=0ABCD342

xAyC44302926A2530B25C2830D2854ABCDAA=BBA=CCAC=BDDAB64如POQ=30A射線AOB之徑長2⊙與直O(jiān)P切半徑長3⊙B與⊙交OB取值范圍A.5<OB<9B.4<OB<9C.3<OB<7D.2<OB<7共,每題分,分)7.(4分)﹣8的立方根是..()計(jì)算:(a+1)﹣2=..()方程組是..(4分)某商品原價(jià)為,如果按原價(jià)的八折銷,那么售價(jià)是元.(用含字母的代數(shù)式表示)..(4)已知反比例函數(shù)(k常數(shù),k≠)圖象有一支在第二象限,那么的取值范圍是..(4分某校學(xué)自主建了一個(gè)學(xué)習(xí)用品義賣平臺(tái)已知九級(jí)名學(xué)生義所得金的數(shù)分布直方圖如圖所示,么﹣30元這個(gè)小組的組頻率是..(4)從,中選一個(gè)選出無理數(shù)概為..(4分)如果函數(shù)(是常,k≠0)的圖象(1,0)那么y的x的大而.(填大?。?圖,行邊形E邊BC中聯(lián)DE并延長,與AB的點(diǎn)F.=,么量用量、示為..(4分角形內(nèi)角和問題.如果從某個(gè)邊形的個(gè)頂點(diǎn)發(fā)的對角線共有條那么該多邊形的內(nèi)角和是..(分)如圖,已知正形的頂點(diǎn)E在eq\o\ac(△,、)的邊上頂點(diǎn)G、F分別邊.如果eq\o\ac(△,,)的面積是那么這個(gè)正方形的邊長是..4于一位置定它所有都水平置的矩形內(nèi)部或邊上,且圖形與矩每條邊都少公圖,這矩形水平方向的長稱為寬,鉛向的長稱矩形的高.圖菱形邊長為邊水平放置如果該菱形的高是寬的,那么它的寬的值是.解題(本大題共題滿分)19(10)解不等式組:并把解集在數(shù)軸上表示出來..(10分)先化簡,再求值:(,其中a=..(10分)如圖已知eq\o\ac(△,,)中,AB=BC=5,tan∠ABC=.(1)求邊AC的長;(2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為,求.22.(10)一輛汽車在某行駛過程中油箱中的剩余油y(升與行路程x(千之間一函關(guān)其部分圖象如圖示.(1)求關(guān)于x的函關(guān)式不需寫義)(2)已當(dāng)箱的余量升時(shí)該汽會(huì)始示油,在此次駛過程行駛500千米時(shí),司機(jī)發(fā)現(xiàn)離方最近的加油有米的路程,的中,汽開提加,時(shí)加站千?23.12分)知:如,方ABCD,P邊BC一⊥AP,DF⊥AP,分點(diǎn)E、F.求EF=AE﹣BE;結(jié)BF,課=.求EF=EP.24.(12分在面角標(biāo)系中如圖)已知拋物線﹣經(jīng)過點(diǎn)(﹣1,0)和點(diǎn)0,為,點(diǎn)在對稱軸上且于點(diǎn)下,線段點(diǎn)轉(zhuǎn)點(diǎn)落的點(diǎn)處.求的求段的長移使點(diǎn)點(diǎn)的置這點(diǎn)落點(diǎn)的位置果點(diǎn)在軸以O(shè)、D、E、M為頂點(diǎn)的積為,求點(diǎn)的.25(14)已知⊙O的直徑AB=2,弦AC與BD交點(diǎn)且⊥AC垂足為點(diǎn).如圖,如果AC=BD求弦AC的長;如圖,如果E為BD的中點(diǎn),求∠ABD的余切值;(3)聯(lián)結(jié)、CD,如果BC是⊙O內(nèi)接正邊形的邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊求eq\o\ac(△,)ACD的面積.2021年上海市中考數(shù)學(xué)析題共,題分滿分。列題個(gè)項(xiàng))1(算()A.4B.3C.2D..:﹣﹣.:.2.(4分下對元次程﹣3=0根的情的判斷,正確的是()A.有兩個(gè)不相等實(shí)根兩相實(shí)根C.有且只有一個(gè)實(shí)根有數(shù)根【分】根方程的系結(jié)合的判別式即>0,而即可出方程+x﹣兩個(gè)相等的數(shù)根.【解】解:a=1,b=1,c=﹣3,eq\o\ac(△,∴)=b﹣4ac=12﹣()(﹣3)=13>0,∴方程+x﹣3=0有兩個(gè)相等的數(shù)根.故選A.3.(4分)下列對二次函數(shù)2﹣x的圖象的描述,正確的是()A.開口向下稱軸是軸C.經(jīng)過原點(diǎn)對稱軸右側(cè)部分是下降的【分析】A、由>0,可得出拋物線開口向上,選項(xiàng)不正確;B、根據(jù)二次函數(shù)的性質(zhì)可得出拋物線的對稱軸為直線,選項(xiàng)正確;C、代入求出值,由此可得出拋物線經(jīng)過原點(diǎn),選項(xiàng)正確;D、由>0及拋物線對稱軸為直線,利用二次函數(shù)的性質(zhì),可得出當(dāng)>隨的增大而增大,選項(xiàng)不正確.綜上即可得出結(jié)論.【解答】解:A、∵a=1>0,∴拋物線開口向上,選項(xiàng)不正確;B、∵﹣,∴拋物線的對稱軸為直線,選項(xiàng)不正確;C、當(dāng)時(shí),y=x2﹣x=0,∴拋物線經(jīng)過原點(diǎn),選項(xiàng)正確;D、∵a>0,拋物線的對稱軸為直線,∴當(dāng)>隨值的增大而增大,選項(xiàng)不正確.故選:C.4.(4)統(tǒng)計(jì)某住樓戶居五份后周天行圾類的戶依是:27,3029,25,2628,29,那么這組數(shù)據(jù)的位數(shù)眾數(shù)分別()A.25和30B.25和C.28和30D.28和【分】根中位數(shù)和眾數(shù)的概解.【解】解對這組數(shù)據(jù)重排列順序得,26,27,28,29,29,30,處于最中間是數(shù)是,∴這組數(shù)據(jù)的中位數(shù)是,在這組數(shù)據(jù)中,29出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是,故選:D.5.(4分)已知平行四邊形,列條件中,不能判定這個(gè)平行四邊形為矩形的是()A.∠A=∠BB.∠A=∠CC.AC=BDD.AB⊥BC【分析】由矩形的判定方法即可得出答案.【答解:A、∠A=B,∠A+∠B=180°,所以A=可以判定這個(gè)平四形矩,正;B、∠A=∠C不判這平四形矩,錯(cuò);C、AC=BD,對線等,可推出平四形是形故正;D、AB⊥BC,所可以判定個(gè)行邊為形正確故:.6.(4分如圖,已知∠POQ=30°,點(diǎn)、B射線OQ上點(diǎn)A在點(diǎn)O、之間),半徑長為的⊙A與直線相,半長為⊙B與⊙相交那么OB的取值范圍是()A.5<OB<9B.4<OBC.3<OB<7D.2<OB<7【分】作徑AD,據(jù)直三角形角的性質(zhì)得:OA=4,再確認(rèn)⊙B⊙A相切時(shí),OB的長,可得結(jié)論.【解答】:設(shè)⊙A與直線OP相切時(shí)切點(diǎn)為連接AD,∴AD⊥OP,∵∠,AD=2,∴OA=4,當(dāng)⊙B與⊙A相內(nèi)切時(shí),設(shè)切點(diǎn)為C,如圖1∵BC=3,∴OB=OA+AB=4+3﹣2=5;當(dāng)⊙A與⊙B相外切時(shí),設(shè)切點(diǎn)為E,如圖2∴OB=OA+AB=4+2+3=9,∴半徑長為3的⊙B與⊙A相交,那么OB的取值范圍是:<OB<9,故選:A.二12每題分,滿分7.(4分)﹣8的立方根是﹣2.【分析】利用立方根的定即可求解.【解答】解:∵(﹣2)

=﹣8,∴﹣8的立方根是﹣2.故答案為:﹣28.(4分)計(jì)算:(a+1)

﹣a2

=2a+1.【分析】原式利用完全平公式化簡,合并即可得到結(jié)果.【解答】解:原式=a2

+2a+1﹣a2

=2a+1,故答案為:2a+19.(4分)方程組

的解是,.】兩,一,的代出可.】:②+①:x+x=2,:x=2或,把﹣2y=﹣2,把y=1,方為,,為:,.10.()商品原為果按的八售,售價(jià)是母.價(jià)=原價(jià)×即可.題售為,:0.8a.11(分已數(shù)(k是常k≠1圖一支二象限,么取是.由數(shù)的圖象有一支在第象限,故求出的取值圍即可.【解答】解:∵反比例數(shù)圖象有一支在第二象限,∴k﹣1<0,解得1.故答案為:k<1.12.(4)某校學(xué)生自主建立了一學(xué)習(xí)用義賣平臺(tái),已知九年級(jí)名學(xué)生義所得金的數(shù)分布直方圖如圖所示,么﹣30元這個(gè)小組的組頻率是.【分】根“頻率頻數(shù)÷總數(shù)”即得.【解】解:﹣30這個(gè)組的頻率是50÷200=0.25,故答為:0.25.134)從,π,個(gè)數(shù),選這個(gè)數(shù)是無理數(shù)的概率為.【分析】由題意得共種等可能的結(jié)果其中理數(shù)有π、

共2種情況,則利用概率公式求解.【解答】:∵,π,無理數(shù)π,,∴選這個(gè)數(shù)是無理數(shù)的概為,故答案為:.14.(4分如一數(shù)(是數(shù)k≠0)圖(1,0)那么y的x的而小“小)【分析根據(jù)點(diǎn)的坐標(biāo)利用次函圖象上點(diǎn)的坐標(biāo)特征可求出k值再利用一次函數(shù)的性質(zhì)即可得出結(jié)論.【解答】解:∵一次函數(shù)y=kx+3(k是常數(shù),k≠0)的圖象經(jīng)過點(diǎn)1,0),∴0=k+3,∴k=﹣3,∴y的值隨的增大而減小.故答案為:減?。?5.(4知平形E是邊的中結(jié)延長,與線點(diǎn)設(shè),么向量量、為+2.【析】根據(jù)平行四邊形的判定與質(zhì)得到四邊形是平行四邊形,則DC=BF,故AF=2AB=2DC,結(jié)合三角形法則進(jìn)行解答.【解答】解:如圖,連BD,F(xiàn)C,∵四邊形ABCD是行四邊形,∴DC∥AB,DC=AB.DCEFBE又E是邊的中點(diǎn),∴=,∴EC=BE,即點(diǎn)是的中點(diǎn),∴四邊形DBFC是行四邊形,∴DC=BF,故AF=2AB=2DC,∴+=+2=+2.故答案是:.164角形內(nèi)角問題.如果某個(gè)多邊形一個(gè)頂點(diǎn)出發(fā)的對角線共有條,那么該多邊形內(nèi)角和是度.【分析利根據(jù)題意到條對角線將邊形分割為個(gè)三角形,然后根據(jù)三角形內(nèi)和可計(jì)算出多邊形的內(nèi)和.【答】解從某個(gè)邊形的個(gè)頂點(diǎn)發(fā)的對線共有條則將多邊形分割為個(gè)三角形.所該多邊形的內(nèi)角和是3×180°=540°.故案為.17.(4分如,知正方形的頂點(diǎn)E在eq\o\ac(△,、)的邊,頂點(diǎn)G、F分別在邊AC上.如果eq\o\ac(△,,)ABC的面積是那這正形的邊長是.【分析】作BC于交于,先利用三角形面積公式計(jì)算出AH=3,設(shè)正方形DEFG邊長為,則,MH=xAM=3﹣x,再eq\o\ac(△,∽)ABC,則根據(jù)相似三角形的性質(zhì)得,然后解關(guān)于的方程可.【解答】:作⊥BC于交于如圖,eq\o\ac(△,∵)ABC的面積是,∴BCAH=6,∴AH==3,設(shè)正方形的邊長為,則GF=x,MH=x,AM=3﹣,∵GF∥BC,eq\o\ac(△,∴)AGF

∽△ABC,∴,=,解得x=,即正方形的邊長為故答案為18.分)對于個(gè)位確圖形如果的所有都一水放的矩形內(nèi)部邊上且該圖與矩每條都至有一公共點(diǎn)如圖1),那么個(gè)形水平方向的稱為該寬,鉛向的稱該矩形的高.圖,菱形邊長為邊水平放置.如果該菱形的高是寬的,那么它的寬的值是.【分析】先根據(jù)要求畫圖設(shè)矩形的寬,則x根據(jù)勾股定理列方程可得結(jié)論.【解答】解:在菱形上建如圖所示的矩形EAFC,設(shè)則x,在eq\o\ac(△,Rt)CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF

2

,,解得:x=或舍),即它的寬的值是,故答案為:.共題分)19(10)解不等式組:在數(shù)軸上表示出來.】式不再公是組.】:式x﹣1,解等②:≤3,則等組解是﹣1<x≤3,不式的集數(shù)上表示為:20.(10分先簡再值(,其中.【析先根式混運(yùn)順和算化原,將a的代入算可.【解答】解:原式=[﹣=?=,當(dāng)時(shí),原式===5﹣2.21.(10分如,,AB=BC=5,tan.(1)求邊AC的長(2)設(shè)邊BC的垂平線與邊AB的點(diǎn)為D,求的.【析(1)過A作AE⊥BC,在直角角中,利銳三函定求出AC的長可(2)由DF垂直分,求出BF的長利用角角數(shù)定義出DF的長,利用股理出的長進(jìn)而出AD的長即可出所求.【答解()作A作AE⊥BC,在eq\o\ac(△,Rt)ABE中,tan=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在eq\o\ac(△,Rt)AEC中根據(jù)股理:AC==;(2)∵DF垂直分,∴BD=CD,,∵tan=,,Rteq\o\ac(△,在)BFD中,根據(jù)勾股定理得:BD==,∴AD=5﹣=,則=.22.(10分一輛汽車在某次駛過程中,油中的剩余量y(升與駛路程x(千)間一函關(guān)其部圖如所.求y關(guān)于x的函數(shù)系;不要義域已知油的剩油為8升時(shí)該汽會(huì)始示油在此行過程中,行駛了500千米時(shí),司機(jī)發(fā)現(xiàn)離方最近的加油有米的路程,在的中,汽開提加,時(shí)加站千?【分】函數(shù)象點(diǎn)的標(biāo)用定系數(shù)求一次函解式,再根據(jù)一函圖上的標(biāo)征可出余量5升時(shí)駛路此題得解【解】(1)設(shè)該一函解式y(tǒng)=kx+b,將(150,45)、(0,60)入y=kx+b中,,解:,∴該次數(shù)析為﹣x+60.(2)當(dāng)﹣,解得.即行駛千米時(shí),油箱中的剩余油量為升.530﹣520=10千米,油箱中的剩余油量為升時(shí),距離加油站千米.往該加中,汽示加油加油站是千.23(,正方形ABCD中P邊,BE⊥,DF⊥AP點(diǎn)、F.:EF=AE﹣BE;結(jié)課:EF=EP.【析(1)利正方的性得,∠BAD=90°,根據(jù)等角余角等得到∠1=∠3則ABE≌則BE=AF然后用等段換到結(jié)論;(2)用到=

,則判eq\o\ac(△,Rt)BEF∽R(shí)teq\o\ac(△,,)

所以∠4=∠3,再明∠∠5,然根等三的質(zhì)可斷EF=EP.【答證明(∵四形為方,∴AB=AD,BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠∠2+∠3=90°,∴∠1=∠3,eq\

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論