版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
97/97
AcademicYear:(2012/2013)
Enrolmentnumber:12014664
Fullname:SijunWu
Course:BEngHonorsDegreeinElectricaland
ElectronicEngineering
ProjectTitle:Real-TimeComputerLevelControlofaWaterTank
1stSupervisor:GuopingLiu
2ndSupervisor:DrMikePrice
Date:April2013
Real-TimeComputerLevelControlofaWaterTank
Student:SijunWu
ID:12014664
Date:April2013
UniversityofGlamorgan
DissertationsubmittedinpartialfulfillmentfortheBEnginElectricalandElectronicEngineering.
FacultyofAdvancedTechnology
Declaration
Iunderstandthenatureofplagiarism,andIamawareoftheUniversity’spolicyonthis.
Ideclarethatthisdissertationistheresultofmyownindependentinvestigationandthatallsourceshavebeenappropriatelyacknowledgedinthebibliography.
Signature:Date:
Abstract
Withthedevelopmentofthetimes,Controlsystemisplayinganincreasinglyimportantroleinvariousfields.Watertankcontrolsystemisatypicalmodelofcontrolsystem.Controlofwatertankcanbeusedasthebasisofresearchintomorecomplexnonlinearsystem,Itnotonlyhasastrongtheoretical,belongstotheapplicationofbasicresearch,butalsoitwithstrongcomprehensive.Itcontainscontroltheory,intelligentcontrol,fluidmechanics,andotherdisciplines.
People'slifeandindustrialproduction,andmanyotherareasofteninvolveliquidlevelandflowcontrolproblem,forexampleinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.Sotheliquidheightisanimportantparameteroftheindustrialprocesscontrol,especiallyinadynamicstate.Byusingsuitablemethodstodetecttheliquidlevelcancontrolitcanreceivegoodeffect.
Inthisfinalprojectdesign,Idutyistodesignawatertankliquidlevelcontrolsystem,whichinvolvesthedynamicliquidlevelcontrol,themodelingofthecontrolsystem,PIDparameterssetting.Iwilldiscussusingdifferentcontrolmethodstoachievecontrolrequire,forinstance,Proportionalcontroller,PIcontroller.Iwilldiscussbothdesignprocessesandtestresultsinthispaper.WhatmoreIwillintroducesomemainsoftwarewhichincludesMATLAB,SIMULINK,andNetConSystems.
Keywords:positioncontrol,PIcontroller,PIDparameterssetting,software
Acknowledgement
Firstofall,Iwantappreciatemyfirstsupervisorandsecondsupervisor.Icouldnotachievemyprojectwithouttheirhelp.EspeciallyprofessorGuopingLiu,hegivesmegreatsupport.Whensomequestionsreallyconfuseme,healwaysfillsofpatientandanswerforme.Heencouragesmeandteachesmehowtosolvetheproblems.Henotonlyteachesmeknowledgebutalsocreativemyabilityofresearchtheessentialoftheproblem.Nomatterinthetheoreticalknowledgeandpracticaltest.
SecondlyIwanttoappreciatetheUniversityofGlamorgan.Theygivemeopportunitytolearnthetheorywiththerealapplication.
ThirdlyIwanttosaythankstoBeijingUniversityofCivilEngineeringandArchitecturewhereIusedtostudy.TheygavemethechancetostudyintheUniversityofGlamorgannow.Iwanttoappreciatemyteacherinchina,especiallyprofessorZhijianJiang.
AtlastIwanttosaythanktoanypeoplewhosupportme.Especiallythankstomyparentsandmyfriends.
AllofyouareveryimportantformeandIreallyappreciatethehelpthatyougavemeinthiswholeyear.
content
Abstract
4
Acknowledgement
5
content
6
Figurelist
9
Chapter1.ProjectOverview
11
1.1 AimandObjectives:
11
1.2GeneralBackground:
11
1.2.1Singlewater-tanksystem
11
1.2.2Couplewater-tanksystem
12
Chapter2.SoftwareIntroduction
14
2.1MATLABIntroduction
14
2.2Simulinkintroduction
16
2.3NetConSystem
17
2.3.2NetConLink
18
2.3.3NetConTop
19
Chapter3.HardwareIntroduction
20
3.1Coupled-tanksystemdescription
20
3.2Componentnomenclature
21
3.3componentdescription
22
3.3.1Overallframeandwatertanks
22
3.3.2Pump
22
3.3.3Pressuresensor
22
3.4Coupled-tankmodelparameters
22
Chapter4.Theoryandmathematicalmodel
25
4.1Mathematicalmodel
25
4.2Mathematicalmodeloftheupperwatertank
25
4.2.1Upperwatertanklevelmodelingnonlinearequationofmotion
25
4.2.2Upperwatertanklevelmodelinglinearizationandsystemtransferfunction
28
4.3Mathematicalmodelofthecouplewatertank
31
4.3.1Couplewatertanklevelmodelingnonlinearequationofmotion
31
4.3.2Couplewatertanklevelmodelinglinearizationandsystemtransferfunction
33
Chapter5.IntroductionofcontrolsystemsandControllerDesign
37
5.1Introductionofcontrolsystems
37
5.2Upperwatertankwaterlevelcontrollerdesign
38
5.2.1UpperwatertankwaterlevelP-plus-feedforwardcontroller
38
5.2.2UpperwatertankwaterlevelPI-plus-feedforwardcontroller
42
5.2.3UpperwatertankwaterlevelCascadeandfeedbackcontroller
46
5.3Couplewatertankwaterlevelcontrollerdesign
48
5.3.1TheInstructionsforthecascadesystem.
48
5.3.2CouplewatertankwaterlevelPI-plus-feedforwardcontroller
49
Chapter6.Thesimulationofthesystemcontroller
52
6.1Thesimulationofupperwatercontroller
52
6.1.1SimulationofProportionalcontroller
52
6.1.2Simulationofproportionalintegralcontroller
54
6.1.3Simulationofcascadeandfeedbackcontroller
55
6.2Thesimulationofcouplewatertankcontroller
57
Chapter7.Actualexperimentaloperationandtestresults
61
7.1TheInstructionsforactualexperimental
61
7.1.1TheInstructionsforthedigitaltoanalogandanalogtodigitalconversion
61
7.1.2TheInstructionsforusingNetConSystemNetConLinkandNetConTop
62
7.1.3Waterlevelsensorcalibration
64
7.14look-uptable
65
7.1.5Limitvoltageprotectionsystem
66
7.2Experimentalresultsandanalysisoftheupperwatertank
67
7.2.1ExperimentalresultsofP-plus-feedforwardcontroller
67
7.2.2ExperimentalresultsofPI-plus-feedforwardcontroller
69
7.2.3Experimentalresultsofcascadeandfeedbackcontroller
71
7.3Experimentalresultsandanalysisofthecouplewatertank
73
Chapter8.Mistakeanalysis
76
Chapter9.Conclusions
77
Chapter10.FutureWork
78
Reference
79
Appendix1
80
Appendix2
97
Figurelist
Figure1.IllustratingtheAnalogy
Figure2.SchematicoftheCoupled-Tankplant
Figure3TheoverallNetConsystem
Figure4NetController
Figure5InterfaceofNetConLink
Figure6UserInterfaceofNetConTopsoftware
Figure7Coupled-tankModel
Figure8Coupled-tankComponent
Figure9Upperwatertanklevelmodel
Figure10Theopen-looptransferfunctionoftheupperwatertank
Figure11couplewatertanklevelmodel
Figure12Theopen-looptransferfunctionofcouplewatertank
Figure13Open-loopcontrolsystem
Figure14Close-loopcontrolsystem
Figure15P-plus-feedforwardclose-loopcontrolsystem
Figure16Stepresponseofafirstordersystem-timeconstant
Figure17PI-plus-feedforwardclose-loopcontrolsystem
Figure18Cascadeandfeedbackcontrolsystem
Figure19Theblockofwholesystem
Figure20Cascadesystem
Figure21TheblockdiagramofCouplewatertankwaterlevelPI-plus-feedforward
Controlsystem
Figure22TheblockdiagramofProportionalcontroller
Figure23TheblockdiagramofProportionalintegralcontroller
Figure24TheblockdiagramofProportionalcontroller
Figure25TheblockdiagramofcouplewatertankPIcontroller
Figure26Thesystemamplitudeoscillationcurve
Figure27couplewatertankPIcontrollersimulationresults
Figure28Digital-to-analogandanalog-to-digitalconverter
Figure29NetConset
Figure30NetConset
Figure31NetConset
Figure32NetConset
Figure33NetConTopset
Figure34NetConTopset
Figure35Calibrationmodel
Figure36Calibrationcircuitboard
Figure37Saturationblock
Figure38Saturationset
Figure39Proportionalcontrolsystemblockdiagram
Figure40P-plus-feedforwardcontrollerexperimentresult1
Figure41P-plus-feedforwardcontrollerexperimentresult2
Figure42PI-plus-feedforwardcontrolsystemblockdiagram
Figure43PI-plus-feedforwardcontrollerexperimentresult1
Figure44PI-plus-feedforwardcontrollerexperimentresult2
Figure45PI-plus-feedforwardcontrollerexperimentresult3
Figure46Cascadeandfeedbackcontrolsystemblockdiagram
Figure47Cascadeandfeedbackcontrollerexperimentresult1
Figure48Cascadeandfeedbackcontrollerexperimentresult2
Figure49Cascadeandfeedbackcontrollerexperimentresult3
Figure50CouplewatertankPI-plus-feedforwardcontrolsystemblockdiagram.
Figure51CouplewatertankPI-plus-feedforwardcontrollerexperimentresult1
Figure52CouplewatertankPI-plus-feedforwardcontrollerexperimentresult2
Figure53CouplewatertankPI-plus-feedforwardcontrollerexperimentresult3
Figure54CouplewatertankPI-plus-feedforwardcontrollerexperimentresult4
Chapter1.ProjectOverview
AimandObjectives:
Theaimoftheproject:
Thekeyaimoftheprojectistoapplyvariouscontrolstrategiestoreal-timelevelcontrolofawatertankusingcomputers.
Theobjectivesoftheprojectinclude:
Understandthelevelcontrolproblemofawatertank;
Studyclassandadvancecontrolmethods,e.g.,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol,etc.
Befamiliarwiththefollowingsoftware:Matlab,Simulink,Real-TimeWorkship,NetConSystem;
Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)inSimulinkforclosed-looplevelcontrolbasedonthemodelofawatertank;
Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)ontheNetConSystemforreal-timeclose-looplevelcontrol,basedonthemodelofawatertank;
Applythesimulatedcontrolstrategiestoapracticallevelcontroltestrig.
1.2GeneralBackground:
1.2.1Singlewater-tanksystem
NowdayinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.
Amodelofsinglewater-tankisshowasthefigureonebelow.V1iswaterdrainvalve.V2istheinletvalve.Theliquidlevelofthecontrolrequirementish0.Thewaterflow,whichdrainintothetankiscontrolledbyV2valve,waterflow,whichdrainsoutofthetank,iscontrolledbyV1valve.TheV1openlibraryischangewiththeneedsofusers.Asaconsequencetocontrolthevariablevalueofthewaterlevelh0itistransfertocontroltheWaterinflow.Inisexperimenttoachievecontroltheinletflowbyusingchangethevoltagewhichisdriventhepump.
Figure1.IllustratingtheAnalogy
1.2.2Couplewater-tanksystem
Coupletankwaterisatypicalmodelofnonlineardelayobjects,muchofthecontrolledobjectinindustrialwholeorpartialcanbeabstractedasmathematicsmodelofdoublewatertank.Ithasstrongrepresentationandstrongindustrialbackground.Inindustrialproductionthemathematicalmodelingandcontrolstrategyofcouplewatertankhastheguidingsignificanceinresearchofliquidlevelcontrolsystem.Suchasindustrialboilers,moldlevelcontrol.
Asisshowedbelowthefigure2isthecouplewatertank.Theexperimentsrequireiscontrolthebottomtankwaterlevelfromthewaterflowcomingoutofthetoptank.
Figure2.SchematicoftheCoupled-Tankplant[1]
Tobemorespecific,thesetabovetwoexperimentalsequencesareaimedat:
HowtomathematicallymodeltheCoupled-Tankfromfirstprinciplesinordertoobtainthetwoopen-looptransferfunctionscharacterizingthesystem,intheLaplacedomain.
Howtolinearizetheobtainednon-linearequationofmotionaboutthequiescentpointofoperation.
Howtodesign,thoughpoleplacement,aproportional-plus-integral-plus-feedforward-basedcontrollerfortheCoupled-Tanksysteminorderforittomeettherequireddesignspecificationsforeachconfiguration.
Howtoimplementeachconfigurationcontrollerinreal-timeandevaluatetheiractualperformance.
Chapter2.SoftwareIntroduction
2.1MATLABIntroduction
MATLABisaprogrammingenvironmentforalgorithmdevelopment,dataanalysis,visualization,andnumericalcomputation.UsingMATLAB,youcansolvetechnicalcomputingproblemsfasterthanwithtraditionalprogramminglanguages,suchasC,C++,andFORTRAN.
YoucanuseMATLABinawiderangeofapplications,includingsignalandimageprocessing,communications,controldesign,testandmeasurement,financialmodelingandanalysis,andcomputationalbiology.Foramillionengineersandscientistsinindustryandacademia,MATLABisthelanguageoftechnicalcomputing[2].
KeyFeatures:
High-levellanguagefortechnicalcomputing
Developmentenvironmentformanagingcode,files,anddata
Interactivetoolsforiterativeexploration,design,andproblemsolving
Mathematicalfunctionsforlinearalgebra,statistics,Fourieranalysis,filtering,optimization,andnumericalintegration
2-Dand3-Dgraphicsfunctionsforvisualizingdata
Toolsforbuildingcustomgraphicaluserinterfaces
FunctionsforintegratingMATLABbasedalgorithmswithexternalapplicationsandlanguages,suchasC,C++,Fortran,Java?,COM,andMicrosoftExcel
MATLABcanbeusedinfollowingworks:
(1).Creatingtransferfunctions
Atransferfunctioncanbeexpressedasanumeratorpolynomialdividedbyadenominatorpolynomial,thatis,F(s)=N(s)/D(s).Thenumerator,N(s),isrepresentedbyarowvector,numf,thecontainsthecoefficientsofN(s).Similarly,thedenominator,D(s),isrepresentedbyarowvector,denf,thatcontainsthecoefficientsofD(s).WeformF(s)withthecommand,F=tf(numf,denf).Fiscalledalineartime-invariant(LTI)object,ortransferfunction,canbeusedasanentityinotheroperations,suchasadditionormultiplication.
(2)Timeresponse
WecanuseMATLABtocalculatecharacteristicsofasecondordersystem,suchasdampingratio,;naturalfrequency;percentovershoot,%OS;settlingtime,Ts;andpeaktime,Tp.
(3)Stability
MATLABcansolveforthepolesofatransferfunctioninordertodeterminestability.Also,wecanuseMATLABtofindtherangeofgainforstabilitybygeneratingaloop,changinggain,andfindingatwhatgainweobtainright-half-planepoles.
(4)Steady-stateerror
Staticerrorconstantsarefoundusingas.Oncethestaticerrorconstantisfound,wecanevaluatethesteady-stateerror.
(5)Rootlocustechniques
MATLABallowsrootlocitobeplottedwiththerlocus(GH)command.Pointsontherootlocuscanbeselectedinteractivelyusingthe‘rlocfind’command.MATLABthenyieldsthegain(K)atthatpointaswellasallotherpoles(p)thathavethatgain.Wecanzoominandoutoftherootlocusbychangingtherangeofaxisvalues.Therootlocuscanbedrawnoveragridthatshowsconstantdampingratio()andconstantnaturalfrequency()
(6)FrequencyResponseTechniques
WecanuseMATLABtomakeBodeplotsusingbode(G),whereG/(s)=numg/dengandGisanLTItransferfunctionobject.Also,wecanuseMATLABtomakeNyquistdiagramsusingNyquist(G)[2].
2.2Simulinkintroduction
SIMULINKisanenvironmentformultidomainsimulationandModel-BasedDesignfordynamicandembeddedsystems.Itprovidesaninteractivegraphicalenvironmentandacustomizablesetofblocklibrariesthatletyoudesign,simulate,implement,andtestavarietyoftime-varyingsystems,includingcommunications,controls,signalprocessing,videoprocessing,andimageprocessing.
Add-onproductsextendSIMULINKsoftware
tomultiplemodelingdomains,aswellasprovidetoolsfordesign,implementation,andverificationandvalidationtasks.
SIMULINKisintegratedwithMATLAB,providingimmediateaccesstoanextensiverangeoftoolsthatletyoudevelopalgorithms,analyzeandvisualizesimulations,createbatchprocessingscripts,customizethemodelingenvironment,anddefinesignal,parameter,andtestdata[3].
KeyFeatures
Extensiveandexpandablelibrariesofpredefinedblocks
Interactivegraphicaleditorforassemblingandmanagingintuitiveblockdiagrams
Abilitytomanagecomplexdesignsbysegmentingmodelsintohierarchiesofdesigncomponents
ModelExplorertonavigate,create,configure,andsearchallsignals,parameters,properties,andgeneratedcodeassociatedwithyourmodel
Applicationprogramminginterfaces(APIs)thatletyouconnectwithothersimulationprogramsandincorporatehand-writtencode
MATLAB
FunctionblocksforbringingMATLABalgorithmsintoSIMULINKandembeddedsystemimplementations
Simulationmodes(Normal,Accelerator,andRapidAccelerator)forrunningsimulationsinterpretivelyoratcompiledC-codespeedsusingfixed-orvariable-stepsolvers
Graphicaldebuggerandprofilertoexaminesimulationresultsandthendiagnoseperformanceandunexpectedbehaviorinyourdesign
FullaccesstoMATLABforanalyzingandvisualizingresults,customizingthemodelingenvironment,anddefiningsignal,parameter,andtestdata
Modelanalysisanddiagnosticstoolstoensuremodelconsistencyandidentifymodelingerrors
2.3NetConSystem
TheNetCon(NetworkedControl)systemisaplatformforteachingandresearchofreal-timecontrolsystemsthroughIntranet/Internet.Itconsistsofthreehardwareandsoftwareparts:NetController,NetConLinkandNetConTop.Classic,modernandadvancedcontrolmethodscaneasilybeimplementedforreal-timecontrolusingtheNetConsystem,whichisbasedonthevisualconfigurationtechnology.[4]
Figure3.TheoverallNetConsystem[4]
2.3.1NetController
NetControlleristhefront-endexecutionunitsofNetConsystem,runningspecificcontrolalgorithms.NetControllerthroughthenetworkinterfacereceivesthemonitoringandcontrolparametersandcontrolcommandfromconfigurationplatform,andcontrolthereal-timerunningstateanduploadedtothemonitoringobjectconfigurationplatform.Itisbasedon32-bitARMmicroprocessor,whichishighperformance,lowpowerconsumption.Itrunningembeddedreal-timeoperatingsystemanduseindustry-specificmodulardesign,providemoreroadinput/outputinterfacestandards,suchasA/DandD/A,PWM,digitalI/O,etc,andalsoprovidesLCDdisplayoutput.Comparedwiththetraditionalfront-endcontroller,networkcontrollerhashigherspeedandlargeraddressingcapability,coupledwithmulti-taskingandreal-timeembeddedoperatingsystemitcancompletelyguaranteethesmoothrunningofcomplexcontrolalgorithms.
Figure4.NetController[4]
2.3.2NetConLink
Networkvisualcontrolconfigurationsoftware(NetConLink)isbasedonMatlab/SimulinkanditcanachieveseamlessandSIMULINKcombined.FirstlyUserscanusevariousmodulesandcustomizationoftheS-functionsystemfunction,whichisprovidingbySimulink.Secondlyusinggraphicalwaytocreatemodelofcontrollerandcontrolledobject.Thencontrolstrategyistestedmanytimesforthewholecontrolsystemoftheofflineandonlineinordertoverifythefeasibility.AfterthatcodeisgeneratedandautomaticallycanbedownloadedintoNetControllerbyNetConLinkinafewseconds.NetConLinkprovideshardwaredrivermoduleandnetworkcontroltoolbox,andprovidetheinterfaceforNetConTop.
Figure5.InterfaceofNetConLink[4]
2.3.3NetConTop
Networkvisualmonitoringconfigurationsoftware(NetConTop)isbasedonWindowsoperatingsystemanditisusedtogeneratecomputinggraphicalmonitoringprogramconfigurationsoftwaredevelopmentplatform.Itprovidesacompleteprogramofsolvingengineeringmonitoringproblems.Userscaneasilydesignvisualmonitorinterface.Itoffersavarietyofstandardconfigurationcontrol,suchasthegraph,instrument,theinputbox,andsupporttheclient/serverarchitecture.Itsmainfunctionsinclude:NetConcontrollerreal-timedataacquisitionandmanagement,real-timemonitoring,commissioningandmanagement.
Figure6.UserInterfaceofNetConTopsoftware[4]
Chapter3.HardwareIntroduction
3.1Coupled-tanksystemdescription
Figure7.Coupled-tankModel[1]
TheCoupled-tankplantmoduleisconsistingbyapumpwithawaterbasinandtwotanks.AsshowninFigure7.Thetwotanksarefixedonthepanel.Agearpumpisinstalledatthebottomofthepanel.Thepumpcanthruststhewaterfromthewaterreservoir,whichisundertheCouple-tanks,throughthehoseaffluxintotheuppertank,suchthatflowfromtheuppertankcandrainthroughanoutletorifice,whichislocatedatthebottomoftheuppertank,intothelowertank.Flowfromthelowertankflowsintothemainwaterreservoir.Ineachoneofthetwotanks,liquidiswithdrawnfromthebottomthroughanoutfloworifice.Theoutletpressureisatmospheric.Inordertointroduceadisturbanceflowtheuppertankisalsoequippedwithadraintapsothatwhenopen,flowcanbedraindirectlyintothewaterreservoir.Foreachwaterstankwecanseeastaffgaugeattachbesidethetanktodisplaytherealtimewaterlevel.TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevelandgivefeedbacksignal.
3.2Componentnomenclature
Coupled-TankOverFrame
UpperTank
LowerTank
MainWaterBasin
Pump
FlexibleTubing
Quick-ConnectInletOrificeOut1
Quick-ConnectInletOrificeOut2
Quick-ConnectOut1CouplingAndHose
Quick-ConnectOut2CouplingAndHose
SmallOutletInsert
MediumOutletInsert
LargeOutletInsert
PlainOutletInsert
DisturbanceTap
FlowSplitter
PressureSensor
Figure8.Coupled-tankComponent[1]
CalibrationAndSignalConditioningCircuitBoard
PumpMotor4-PinDINConnector
PressureSensorCable6-Pin-MiniDINConnector
TankLevelScale
3.3componentdescription
3.3.1Overallframeandwatertanks
Thecoupled-tankoverallframeandwatertanksaremadeofPlexiglas.Thewatertankshaveuniformcrosssection.[1]
Description
Value
Unit
Overallframeheight
0.915
m
Overallframewidth
0.305
m
Overallframedepth
0.305
m
Form1
3.3.2Pump
TheCoupled-tankpumpisagearpumpcomposedofa12VoltDCmotorwithheatradiatingfins.[1]
3.3.3Pressuresensor
TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevel.Thesensoroutputvoltageincreasesproportionallytotheappliedpressure.ItsoutmeasurementisprocessedthroughaSignalConditioningBoardandmadeavailableas0to5VDCsignal.
3.4Coupled-tankmodelparameters
Symbol
Description
Value
Unit
Kp
PumpFlowConstant
3.3
cm3/S/V
Vp_max
P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 祠堂古建筑景觀設計承包合同(二零二五)3篇
- 2025年度網絡安全專家個人雇傭服務協(xié)議范本4篇
- 2025年度個人寵物寄養(yǎng)服務合同參考范本4篇
- 2025年度廁所防滑防霉涂料研發(fā)與應用合同3篇
- 2025年度個人融資擔保協(xié)議書范本4篇
- 2025年高端住宅小區(qū)車位租賃與管家式服務合同3篇
- 2025年度定制化鋁合金門窗設計與施工一體化合同4篇
- 二零二五年度車輛抵押借款合同(含車輛評估)3篇
- 二零二五版酒店客房承包經營與管理服務合同3篇
- 2025年度城市門衛(wèi)崗位招聘與管理合同范本4篇
- 廣東省佛山市2025屆高三高中教學質量檢測 (一)化學試題(含答案)
- 人教版【初中數學】知識點總結-全面+九年級上冊數學全冊教案
- 2024年全國體育單招英語考卷和答案
- 食品安全管理制度可打印【7】
- 2024年九年級語文中考名著閱讀《儒林外史》考前練附答案
- 抖音麗人行業(yè)短視頻直播項目運營策劃方案
- 2024年江蘇揚州市邗城文化旅游發(fā)展有限公司招聘筆試參考題庫含答案解析
- 小學六年級數學100道題解分數方程
- 社區(qū)獲得性肺炎護理查房內科
- 淺談提高中學生歷史學習興趣的策略
- 項目管理實施規(guī)劃-無錫萬象城
評論
0/150
提交評論