電氣工程及其自動化優(yōu)秀畢業(yè)論文英文_第1頁
電氣工程及其自動化優(yōu)秀畢業(yè)論文英文_第2頁
電氣工程及其自動化優(yōu)秀畢業(yè)論文英文_第3頁
電氣工程及其自動化優(yōu)秀畢業(yè)論文英文_第4頁
電氣工程及其自動化優(yōu)秀畢業(yè)論文英文_第5頁
已閱讀5頁,還剩93頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

97/97

AcademicYear:(2012/2013)

Enrolmentnumber:12014664

Fullname:SijunWu

Course:BEngHonorsDegreeinElectricaland

ElectronicEngineering

ProjectTitle:Real-TimeComputerLevelControlofaWaterTank

1stSupervisor:GuopingLiu

2ndSupervisor:DrMikePrice

Date:April2013

Real-TimeComputerLevelControlofaWaterTank

Student:SijunWu

ID:12014664

Date:April2013

UniversityofGlamorgan

DissertationsubmittedinpartialfulfillmentfortheBEnginElectricalandElectronicEngineering.

FacultyofAdvancedTechnology

Declaration

Iunderstandthenatureofplagiarism,andIamawareoftheUniversity’spolicyonthis.

Ideclarethatthisdissertationistheresultofmyownindependentinvestigationandthatallsourceshavebeenappropriatelyacknowledgedinthebibliography.

Signature:Date:

Abstract

Withthedevelopmentofthetimes,Controlsystemisplayinganincreasinglyimportantroleinvariousfields.Watertankcontrolsystemisatypicalmodelofcontrolsystem.Controlofwatertankcanbeusedasthebasisofresearchintomorecomplexnonlinearsystem,Itnotonlyhasastrongtheoretical,belongstotheapplicationofbasicresearch,butalsoitwithstrongcomprehensive.Itcontainscontroltheory,intelligentcontrol,fluidmechanics,andotherdisciplines.

People'slifeandindustrialproduction,andmanyotherareasofteninvolveliquidlevelandflowcontrolproblem,forexampleinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.Sotheliquidheightisanimportantparameteroftheindustrialprocesscontrol,especiallyinadynamicstate.Byusingsuitablemethodstodetecttheliquidlevelcancontrolitcanreceivegoodeffect.

Inthisfinalprojectdesign,Idutyistodesignawatertankliquidlevelcontrolsystem,whichinvolvesthedynamicliquidlevelcontrol,themodelingofthecontrolsystem,PIDparameterssetting.Iwilldiscussusingdifferentcontrolmethodstoachievecontrolrequire,forinstance,Proportionalcontroller,PIcontroller.Iwilldiscussbothdesignprocessesandtestresultsinthispaper.WhatmoreIwillintroducesomemainsoftwarewhichincludesMATLAB,SIMULINK,andNetConSystems.

Keywords:positioncontrol,PIcontroller,PIDparameterssetting,software

Acknowledgement

Firstofall,Iwantappreciatemyfirstsupervisorandsecondsupervisor.Icouldnotachievemyprojectwithouttheirhelp.EspeciallyprofessorGuopingLiu,hegivesmegreatsupport.Whensomequestionsreallyconfuseme,healwaysfillsofpatientandanswerforme.Heencouragesmeandteachesmehowtosolvetheproblems.Henotonlyteachesmeknowledgebutalsocreativemyabilityofresearchtheessentialoftheproblem.Nomatterinthetheoreticalknowledgeandpracticaltest.

SecondlyIwanttoappreciatetheUniversityofGlamorgan.Theygivemeopportunitytolearnthetheorywiththerealapplication.

ThirdlyIwanttosaythankstoBeijingUniversityofCivilEngineeringandArchitecturewhereIusedtostudy.TheygavemethechancetostudyintheUniversityofGlamorgannow.Iwanttoappreciatemyteacherinchina,especiallyprofessorZhijianJiang.

AtlastIwanttosaythanktoanypeoplewhosupportme.Especiallythankstomyparentsandmyfriends.

AllofyouareveryimportantformeandIreallyappreciatethehelpthatyougavemeinthiswholeyear.

content

Abstract

4

Acknowledgement

5

content

6

Figurelist

9

Chapter1.ProjectOverview

11

1.1 AimandObjectives:

11

1.2GeneralBackground:

11

1.2.1Singlewater-tanksystem

11

1.2.2Couplewater-tanksystem

12

Chapter2.SoftwareIntroduction

14

2.1MATLABIntroduction

14

2.2Simulinkintroduction

16

2.3NetConSystem

17

2.3.2NetConLink

18

2.3.3NetConTop

19

Chapter3.HardwareIntroduction

20

3.1Coupled-tanksystemdescription

20

3.2Componentnomenclature

21

3.3componentdescription

22

3.3.1Overallframeandwatertanks

22

3.3.2Pump

22

3.3.3Pressuresensor

22

3.4Coupled-tankmodelparameters

22

Chapter4.Theoryandmathematicalmodel

25

4.1Mathematicalmodel

25

4.2Mathematicalmodeloftheupperwatertank

25

4.2.1Upperwatertanklevelmodelingnonlinearequationofmotion

25

4.2.2Upperwatertanklevelmodelinglinearizationandsystemtransferfunction

28

4.3Mathematicalmodelofthecouplewatertank

31

4.3.1Couplewatertanklevelmodelingnonlinearequationofmotion

31

4.3.2Couplewatertanklevelmodelinglinearizationandsystemtransferfunction

33

Chapter5.IntroductionofcontrolsystemsandControllerDesign

37

5.1Introductionofcontrolsystems

37

5.2Upperwatertankwaterlevelcontrollerdesign

38

5.2.1UpperwatertankwaterlevelP-plus-feedforwardcontroller

38

5.2.2UpperwatertankwaterlevelPI-plus-feedforwardcontroller

42

5.2.3UpperwatertankwaterlevelCascadeandfeedbackcontroller

46

5.3Couplewatertankwaterlevelcontrollerdesign

48

5.3.1TheInstructionsforthecascadesystem.

48

5.3.2CouplewatertankwaterlevelPI-plus-feedforwardcontroller

49

Chapter6.Thesimulationofthesystemcontroller

52

6.1Thesimulationofupperwatercontroller

52

6.1.1SimulationofProportionalcontroller

52

6.1.2Simulationofproportionalintegralcontroller

54

6.1.3Simulationofcascadeandfeedbackcontroller

55

6.2Thesimulationofcouplewatertankcontroller

57

Chapter7.Actualexperimentaloperationandtestresults

61

7.1TheInstructionsforactualexperimental

61

7.1.1TheInstructionsforthedigitaltoanalogandanalogtodigitalconversion

61

7.1.2TheInstructionsforusingNetConSystemNetConLinkandNetConTop

62

7.1.3Waterlevelsensorcalibration

64

7.14look-uptable

65

7.1.5Limitvoltageprotectionsystem

66

7.2Experimentalresultsandanalysisoftheupperwatertank

67

7.2.1ExperimentalresultsofP-plus-feedforwardcontroller

67

7.2.2ExperimentalresultsofPI-plus-feedforwardcontroller

69

7.2.3Experimentalresultsofcascadeandfeedbackcontroller

71

7.3Experimentalresultsandanalysisofthecouplewatertank

73

Chapter8.Mistakeanalysis

76

Chapter9.Conclusions

77

Chapter10.FutureWork

78

Reference

79

Appendix1

80

Appendix2

97

Figurelist

Figure1.IllustratingtheAnalogy

Figure2.SchematicoftheCoupled-Tankplant

Figure3TheoverallNetConsystem

Figure4NetController

Figure5InterfaceofNetConLink

Figure6UserInterfaceofNetConTopsoftware

Figure7Coupled-tankModel

Figure8Coupled-tankComponent

Figure9Upperwatertanklevelmodel

Figure10Theopen-looptransferfunctionoftheupperwatertank

Figure11couplewatertanklevelmodel

Figure12Theopen-looptransferfunctionofcouplewatertank

Figure13Open-loopcontrolsystem

Figure14Close-loopcontrolsystem

Figure15P-plus-feedforwardclose-loopcontrolsystem

Figure16Stepresponseofafirstordersystem-timeconstant

Figure17PI-plus-feedforwardclose-loopcontrolsystem

Figure18Cascadeandfeedbackcontrolsystem

Figure19Theblockofwholesystem

Figure20Cascadesystem

Figure21TheblockdiagramofCouplewatertankwaterlevelPI-plus-feedforward

Controlsystem

Figure22TheblockdiagramofProportionalcontroller

Figure23TheblockdiagramofProportionalintegralcontroller

Figure24TheblockdiagramofProportionalcontroller

Figure25TheblockdiagramofcouplewatertankPIcontroller

Figure26Thesystemamplitudeoscillationcurve

Figure27couplewatertankPIcontrollersimulationresults

Figure28Digital-to-analogandanalog-to-digitalconverter

Figure29NetConset

Figure30NetConset

Figure31NetConset

Figure32NetConset

Figure33NetConTopset

Figure34NetConTopset

Figure35Calibrationmodel

Figure36Calibrationcircuitboard

Figure37Saturationblock

Figure38Saturationset

Figure39Proportionalcontrolsystemblockdiagram

Figure40P-plus-feedforwardcontrollerexperimentresult1

Figure41P-plus-feedforwardcontrollerexperimentresult2

Figure42PI-plus-feedforwardcontrolsystemblockdiagram

Figure43PI-plus-feedforwardcontrollerexperimentresult1

Figure44PI-plus-feedforwardcontrollerexperimentresult2

Figure45PI-plus-feedforwardcontrollerexperimentresult3

Figure46Cascadeandfeedbackcontrolsystemblockdiagram

Figure47Cascadeandfeedbackcontrollerexperimentresult1

Figure48Cascadeandfeedbackcontrollerexperimentresult2

Figure49Cascadeandfeedbackcontrollerexperimentresult3

Figure50CouplewatertankPI-plus-feedforwardcontrolsystemblockdiagram.

Figure51CouplewatertankPI-plus-feedforwardcontrollerexperimentresult1

Figure52CouplewatertankPI-plus-feedforwardcontrollerexperimentresult2

Figure53CouplewatertankPI-plus-feedforwardcontrollerexperimentresult3

Figure54CouplewatertankPI-plus-feedforwardcontrollerexperimentresult4

Chapter1.ProjectOverview

AimandObjectives:

Theaimoftheproject:

Thekeyaimoftheprojectistoapplyvariouscontrolstrategiestoreal-timelevelcontrolofawatertankusingcomputers.

Theobjectivesoftheprojectinclude:

Understandthelevelcontrolproblemofawatertank;

Studyclassandadvancecontrolmethods,e.g.,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol,etc.

Befamiliarwiththefollowingsoftware:Matlab,Simulink,Real-TimeWorkship,NetConSystem;

Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)inSimulinkforclosed-looplevelcontrolbasedonthemodelofawatertank;

Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)ontheNetConSystemforreal-timeclose-looplevelcontrol,basedonthemodelofawatertank;

Applythesimulatedcontrolstrategiestoapracticallevelcontroltestrig.

1.2GeneralBackground:

1.2.1Singlewater-tanksystem

NowdayinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.

Amodelofsinglewater-tankisshowasthefigureonebelow.V1iswaterdrainvalve.V2istheinletvalve.Theliquidlevelofthecontrolrequirementish0.Thewaterflow,whichdrainintothetankiscontrolledbyV2valve,waterflow,whichdrainsoutofthetank,iscontrolledbyV1valve.TheV1openlibraryischangewiththeneedsofusers.Asaconsequencetocontrolthevariablevalueofthewaterlevelh0itistransfertocontroltheWaterinflow.Inisexperimenttoachievecontroltheinletflowbyusingchangethevoltagewhichisdriventhepump.

Figure1.IllustratingtheAnalogy

1.2.2Couplewater-tanksystem

Coupletankwaterisatypicalmodelofnonlineardelayobjects,muchofthecontrolledobjectinindustrialwholeorpartialcanbeabstractedasmathematicsmodelofdoublewatertank.Ithasstrongrepresentationandstrongindustrialbackground.Inindustrialproductionthemathematicalmodelingandcontrolstrategyofcouplewatertankhastheguidingsignificanceinresearchofliquidlevelcontrolsystem.Suchasindustrialboilers,moldlevelcontrol.

Asisshowedbelowthefigure2isthecouplewatertank.Theexperimentsrequireiscontrolthebottomtankwaterlevelfromthewaterflowcomingoutofthetoptank.

Figure2.SchematicoftheCoupled-Tankplant[1]

Tobemorespecific,thesetabovetwoexperimentalsequencesareaimedat:

HowtomathematicallymodeltheCoupled-Tankfromfirstprinciplesinordertoobtainthetwoopen-looptransferfunctionscharacterizingthesystem,intheLaplacedomain.

Howtolinearizetheobtainednon-linearequationofmotionaboutthequiescentpointofoperation.

Howtodesign,thoughpoleplacement,aproportional-plus-integral-plus-feedforward-basedcontrollerfortheCoupled-Tanksysteminorderforittomeettherequireddesignspecificationsforeachconfiguration.

Howtoimplementeachconfigurationcontrollerinreal-timeandevaluatetheiractualperformance.

Chapter2.SoftwareIntroduction

2.1MATLABIntroduction

MATLABisaprogrammingenvironmentforalgorithmdevelopment,dataanalysis,visualization,andnumericalcomputation.UsingMATLAB,youcansolvetechnicalcomputingproblemsfasterthanwithtraditionalprogramminglanguages,suchasC,C++,andFORTRAN.

YoucanuseMATLABinawiderangeofapplications,includingsignalandimageprocessing,communications,controldesign,testandmeasurement,financialmodelingandanalysis,andcomputationalbiology.Foramillionengineersandscientistsinindustryandacademia,MATLABisthelanguageoftechnicalcomputing[2].

KeyFeatures:

High-levellanguagefortechnicalcomputing

Developmentenvironmentformanagingcode,files,anddata

Interactivetoolsforiterativeexploration,design,andproblemsolving

Mathematicalfunctionsforlinearalgebra,statistics,Fourieranalysis,filtering,optimization,andnumericalintegration

2-Dand3-Dgraphicsfunctionsforvisualizingdata

Toolsforbuildingcustomgraphicaluserinterfaces

FunctionsforintegratingMATLABbasedalgorithmswithexternalapplicationsandlanguages,suchasC,C++,Fortran,Java?,COM,andMicrosoftExcel

MATLABcanbeusedinfollowingworks:

(1).Creatingtransferfunctions

Atransferfunctioncanbeexpressedasanumeratorpolynomialdividedbyadenominatorpolynomial,thatis,F(s)=N(s)/D(s).Thenumerator,N(s),isrepresentedbyarowvector,numf,thecontainsthecoefficientsofN(s).Similarly,thedenominator,D(s),isrepresentedbyarowvector,denf,thatcontainsthecoefficientsofD(s).WeformF(s)withthecommand,F=tf(numf,denf).Fiscalledalineartime-invariant(LTI)object,ortransferfunction,canbeusedasanentityinotheroperations,suchasadditionormultiplication.

(2)Timeresponse

WecanuseMATLABtocalculatecharacteristicsofasecondordersystem,suchasdampingratio,;naturalfrequency;percentovershoot,%OS;settlingtime,Ts;andpeaktime,Tp.

(3)Stability

MATLABcansolveforthepolesofatransferfunctioninordertodeterminestability.Also,wecanuseMATLABtofindtherangeofgainforstabilitybygeneratingaloop,changinggain,andfindingatwhatgainweobtainright-half-planepoles.

(4)Steady-stateerror

Staticerrorconstantsarefoundusingas.Oncethestaticerrorconstantisfound,wecanevaluatethesteady-stateerror.

(5)Rootlocustechniques

MATLABallowsrootlocitobeplottedwiththerlocus(GH)command.Pointsontherootlocuscanbeselectedinteractivelyusingthe‘rlocfind’command.MATLABthenyieldsthegain(K)atthatpointaswellasallotherpoles(p)thathavethatgain.Wecanzoominandoutoftherootlocusbychangingtherangeofaxisvalues.Therootlocuscanbedrawnoveragridthatshowsconstantdampingratio()andconstantnaturalfrequency()

(6)FrequencyResponseTechniques

WecanuseMATLABtomakeBodeplotsusingbode(G),whereG/(s)=numg/dengandGisanLTItransferfunctionobject.Also,wecanuseMATLABtomakeNyquistdiagramsusingNyquist(G)[2].

2.2Simulinkintroduction

SIMULINKisanenvironmentformultidomainsimulationandModel-BasedDesignfordynamicandembeddedsystems.Itprovidesaninteractivegraphicalenvironmentandacustomizablesetofblocklibrariesthatletyoudesign,simulate,implement,andtestavarietyoftime-varyingsystems,includingcommunications,controls,signalprocessing,videoprocessing,andimageprocessing.

Add-onproductsextendSIMULINKsoftware

tomultiplemodelingdomains,aswellasprovidetoolsfordesign,implementation,andverificationandvalidationtasks.

SIMULINKisintegratedwithMATLAB,providingimmediateaccesstoanextensiverangeoftoolsthatletyoudevelopalgorithms,analyzeandvisualizesimulations,createbatchprocessingscripts,customizethemodelingenvironment,anddefinesignal,parameter,andtestdata[3].

KeyFeatures

Extensiveandexpandablelibrariesofpredefinedblocks

Interactivegraphicaleditorforassemblingandmanagingintuitiveblockdiagrams

Abilitytomanagecomplexdesignsbysegmentingmodelsintohierarchiesofdesigncomponents

ModelExplorertonavigate,create,configure,andsearchallsignals,parameters,properties,andgeneratedcodeassociatedwithyourmodel

Applicationprogramminginterfaces(APIs)thatletyouconnectwithothersimulationprogramsandincorporatehand-writtencode

MATLAB

FunctionblocksforbringingMATLABalgorithmsintoSIMULINKandembeddedsystemimplementations

Simulationmodes(Normal,Accelerator,andRapidAccelerator)forrunningsimulationsinterpretivelyoratcompiledC-codespeedsusingfixed-orvariable-stepsolvers

Graphicaldebuggerandprofilertoexaminesimulationresultsandthendiagnoseperformanceandunexpectedbehaviorinyourdesign

FullaccesstoMATLABforanalyzingandvisualizingresults,customizingthemodelingenvironment,anddefiningsignal,parameter,andtestdata

Modelanalysisanddiagnosticstoolstoensuremodelconsistencyandidentifymodelingerrors

2.3NetConSystem

TheNetCon(NetworkedControl)systemisaplatformforteachingandresearchofreal-timecontrolsystemsthroughIntranet/Internet.Itconsistsofthreehardwareandsoftwareparts:NetController,NetConLinkandNetConTop.Classic,modernandadvancedcontrolmethodscaneasilybeimplementedforreal-timecontrolusingtheNetConsystem,whichisbasedonthevisualconfigurationtechnology.[4]

Figure3.TheoverallNetConsystem[4]

2.3.1NetController

NetControlleristhefront-endexecutionunitsofNetConsystem,runningspecificcontrolalgorithms.NetControllerthroughthenetworkinterfacereceivesthemonitoringandcontrolparametersandcontrolcommandfromconfigurationplatform,andcontrolthereal-timerunningstateanduploadedtothemonitoringobjectconfigurationplatform.Itisbasedon32-bitARMmicroprocessor,whichishighperformance,lowpowerconsumption.Itrunningembeddedreal-timeoperatingsystemanduseindustry-specificmodulardesign,providemoreroadinput/outputinterfacestandards,suchasA/DandD/A,PWM,digitalI/O,etc,andalsoprovidesLCDdisplayoutput.Comparedwiththetraditionalfront-endcontroller,networkcontrollerhashigherspeedandlargeraddressingcapability,coupledwithmulti-taskingandreal-timeembeddedoperatingsystemitcancompletelyguaranteethesmoothrunningofcomplexcontrolalgorithms.

Figure4.NetController[4]

2.3.2NetConLink

Networkvisualcontrolconfigurationsoftware(NetConLink)isbasedonMatlab/SimulinkanditcanachieveseamlessandSIMULINKcombined.FirstlyUserscanusevariousmodulesandcustomizationoftheS-functionsystemfunction,whichisprovidingbySimulink.Secondlyusinggraphicalwaytocreatemodelofcontrollerandcontrolledobject.Thencontrolstrategyistestedmanytimesforthewholecontrolsystemoftheofflineandonlineinordertoverifythefeasibility.AfterthatcodeisgeneratedandautomaticallycanbedownloadedintoNetControllerbyNetConLinkinafewseconds.NetConLinkprovideshardwaredrivermoduleandnetworkcontroltoolbox,andprovidetheinterfaceforNetConTop.

Figure5.InterfaceofNetConLink[4]

2.3.3NetConTop

Networkvisualmonitoringconfigurationsoftware(NetConTop)isbasedonWindowsoperatingsystemanditisusedtogeneratecomputinggraphicalmonitoringprogramconfigurationsoftwaredevelopmentplatform.Itprovidesacompleteprogramofsolvingengineeringmonitoringproblems.Userscaneasilydesignvisualmonitorinterface.Itoffersavarietyofstandardconfigurationcontrol,suchasthegraph,instrument,theinputbox,andsupporttheclient/serverarchitecture.Itsmainfunctionsinclude:NetConcontrollerreal-timedataacquisitionandmanagement,real-timemonitoring,commissioningandmanagement.

Figure6.UserInterfaceofNetConTopsoftware[4]

Chapter3.HardwareIntroduction

3.1Coupled-tanksystemdescription

Figure7.Coupled-tankModel[1]

TheCoupled-tankplantmoduleisconsistingbyapumpwithawaterbasinandtwotanks.AsshowninFigure7.Thetwotanksarefixedonthepanel.Agearpumpisinstalledatthebottomofthepanel.Thepumpcanthruststhewaterfromthewaterreservoir,whichisundertheCouple-tanks,throughthehoseaffluxintotheuppertank,suchthatflowfromtheuppertankcandrainthroughanoutletorifice,whichislocatedatthebottomoftheuppertank,intothelowertank.Flowfromthelowertankflowsintothemainwaterreservoir.Ineachoneofthetwotanks,liquidiswithdrawnfromthebottomthroughanoutfloworifice.Theoutletpressureisatmospheric.Inordertointroduceadisturbanceflowtheuppertankisalsoequippedwithadraintapsothatwhenopen,flowcanbedraindirectlyintothewaterreservoir.Foreachwaterstankwecanseeastaffgaugeattachbesidethetanktodisplaytherealtimewaterlevel.TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevelandgivefeedbacksignal.

3.2Componentnomenclature

Coupled-TankOverFrame

UpperTank

LowerTank

MainWaterBasin

Pump

FlexibleTubing

Quick-ConnectInletOrificeOut1

Quick-ConnectInletOrificeOut2

Quick-ConnectOut1CouplingAndHose

Quick-ConnectOut2CouplingAndHose

SmallOutletInsert

MediumOutletInsert

LargeOutletInsert

PlainOutletInsert

DisturbanceTap

FlowSplitter

PressureSensor

Figure8.Coupled-tankComponent[1]

CalibrationAndSignalConditioningCircuitBoard

PumpMotor4-PinDINConnector

PressureSensorCable6-Pin-MiniDINConnector

TankLevelScale

3.3componentdescription

3.3.1Overallframeandwatertanks

Thecoupled-tankoverallframeandwatertanksaremadeofPlexiglas.Thewatertankshaveuniformcrosssection.[1]

Description

Value

Unit

Overallframeheight

0.915

m

Overallframewidth

0.305

m

Overallframedepth

0.305

m

Form1

3.3.2Pump

TheCoupled-tankpumpisagearpumpcomposedofa12VoltDCmotorwithheatradiatingfins.[1]

3.3.3Pressuresensor

TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevel.Thesensoroutputvoltageincreasesproportionallytotheappliedpressure.ItsoutmeasurementisprocessedthroughaSignalConditioningBoardandmadeavailableas0to5VDCsignal.

3.4Coupled-tankmodelparameters

Symbol

Description

Value

Unit

Kp

PumpFlowConstant

3.3

cm3/S/V

Vp_max

P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論