版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
用一個平面去截一個圓錐面,當(dāng)平面經(jīng)過圓錐面的頂點(diǎn)時,可得到兩條相交直線;
當(dāng)平面與圓錐面的軸垂直時,截線(平面與圓錐面的交線)是一個圓.當(dāng)改變截面與圓錐面的軸的相對位置時,觀察截線的變化情況,并思考:●用平面截圓錐面還能得到哪些曲線?這些曲線具有哪些幾何特征?橢圓雙曲線拋物線
橢圓的定義與標(biāo)準(zhǔn)方程?自然界處處存在著形似橢圓的物體,首先讓我們來嘗試如何畫出橢圓。先回憶如何畫圓?實(shí)驗(yàn)?如何定義橢圓?圓的定義:
平面上到定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓.橢圓的定義:
平面上到兩個定點(diǎn)F1,
F2的距離之和等于常數(shù)(大于|F1F2
|)的點(diǎn)的軌跡叫作橢圓.兩個定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距。1.改變兩圖釘之間的距離,使其與繩長相等,畫出的圖形還是橢圓嗎?2.繩長能小于兩圖釘之間的距離嗎?
1.改變兩圖釘之間的距離,使其與繩長相等,畫出的圖形還是橢圓嗎?2.繩長能小于兩圖釘之間的距離嗎?
思考:怎么推導(dǎo)橢圓的標(biāo)準(zhǔn)方程??求動點(diǎn)軌跡方程的一般步驟:1、建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo);2、寫出適合條件P(M);3、用坐標(biāo)表示條件P(M),列出方程;
4、化方程為最簡形式。探究:怎樣建立平面直角坐標(biāo)系呢?OxyOxyOxyMF1F2方案一F1F2方案二OxyMOxyxF1F2P(x,y)0y設(shè)P(x,y)是橢圓上任意一點(diǎn),橢圓的焦距|F1F2|=2c(c>0),則F1、F2的坐標(biāo)分別是(c,0)、(c,0).
P與F1和F2的距離的和為固定值2a(2a>2c)
(問題:下面怎樣化簡?)由橢圓的定義得,限制條件:由于得方程兩邊除以得由橢圓定義可知整理得兩邊再平方,得移項(xiàng),再平方橢圓的標(biāo)準(zhǔn)方程剛才我們得到了焦點(diǎn)在x軸上的橢圓方程,如何推導(dǎo)焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程呢?OXYF1F2M(-c,0)(c,0)YOXF1F2M(0,-c)(0,c)?橢圓的標(biāo)準(zhǔn)方程的特點(diǎn):(1)橢圓標(biāo)準(zhǔn)方程的形式:左邊是兩個分式的平方和,右邊是1(2)橢圓的標(biāo)準(zhǔn)方程中三個參數(shù)a、b、c滿足a2=b2+c2。(3)由橢圓的標(biāo)準(zhǔn)方程可以求出三個參數(shù)a、b、c的值。(4)橢圓的標(biāo)準(zhǔn)方程中,x2與y2的分母哪一個大,則焦點(diǎn)在哪一個軸上。分母哪個大,焦點(diǎn)就在哪個軸上平面內(nèi)到兩個定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡標(biāo)準(zhǔn)方程不同點(diǎn)相同點(diǎn)圖形焦點(diǎn)坐標(biāo)定義a、b、c的關(guān)系焦點(diǎn)位置的判斷?再認(rèn)識!xyF1F2POxyF1F2PO則a=
,b=
;53口答:則a=
,b=
.例3.求下列橢圓的焦點(diǎn)坐標(biāo),以及橢圓上每一點(diǎn)到兩焦點(diǎn)距離的和。例4.求出剛才在實(shí)驗(yàn)中畫出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年會活動總結(jié)范文15篇
- 志愿者服務(wù)心得體會(15篇)
- 法治社會+學(xué)案 高中政治統(tǒng)編版必修三政治與法治
- 初級會計實(shí)務(wù)-《初級會計實(shí)務(wù)》預(yù)測試卷263
- 初級會計經(jīng)濟(jì)法基礎(chǔ)-初級會計《經(jīng)濟(jì)法基礎(chǔ)》??荚嚲?10
- 二氧化硅殼層微膠囊的制備及其復(fù)合材料自潤滑性能研究
- 二零二五年度個人離婚子女撫養(yǎng)權(quán)協(xié)議范本4篇
- 二零二五年度健康產(chǎn)業(yè)養(yǎng)生顧問勞動合同2篇
- 二零二五年度凈水設(shè)備售后技術(shù)支持與用戶滿意度提升協(xié)議3篇
- 軟件行業(yè)美工工作總結(jié)
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫含答案解析
- 上海鐵路局招聘筆試沖刺題2025
- 國旗班指揮刀訓(xùn)練動作要領(lǐng)
- 植物芳香油的提取 植物有效成分的提取教學(xué)課件
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 肖像繪畫市場發(fā)展現(xiàn)狀調(diào)查及供需格局分析預(yù)測報告
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2021-2022學(xué)年遼寧省重點(diǎn)高中協(xié)作校高一上學(xué)期期末語文試題
- 三創(chuàng)賽獲獎-非遺文化創(chuàng)新創(chuàng)業(yè)計劃書
- 封條模板A4直接打印版
評論
0/150
提交評論