浙江省溫州市名校2022-2023學年八年級數(shù)學第二學期期末考試模擬試題含解析_第1頁
浙江省溫州市名校2022-2023學年八年級數(shù)學第二學期期末考試模擬試題含解析_第2頁
浙江省溫州市名校2022-2023學年八年級數(shù)學第二學期期末考試模擬試題含解析_第3頁
浙江省溫州市名校2022-2023學年八年級數(shù)學第二學期期末考試模擬試題含解析_第4頁
浙江省溫州市名校2022-2023學年八年級數(shù)學第二學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年八下數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.菱形的對角線長分別為6和8,則該菱形的面積是()A.24 B.48 C.12 D.102.下列圖形中既是中心對稱圖形,又是軸對稱圖形的是()A. B.C. D.3.要比較兩名同學共六次數(shù)學測試中誰的成績比較穩(wěn)定,應選用的統(tǒng)計量為()A.中位數(shù)B.方差C.平均數(shù)D.眾數(shù)4.下列命題正確的是()A.兩條對角線互相平分且相等的四邊形是菱形B.兩條對角線互相平分且垂直的四邊形是矩形C.兩條對角線互相垂直且相等的四邊形是正方形D.角平分線上的點到角兩邊的距離相等5.下列各組數(shù)是勾股數(shù)的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.56.如圖,矩形中,對角線交于點.若,則的長為()A. B. C. D.7.如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為12cm,點B,D之間的距離為16m,則線段AB的長為A. B.10cm C.20cm D.12cm8.如圖所示,在中,的垂直平分線交于點,交于點,如果,則的周長是()A. B. C. D.9.若直線y=3x+6與直線y=2x+4的交點坐標為(a,b),則解為的方程組是()A. B. C. D.10.已知ABCD中,∠A+∠C=200°,則∠B的度數(shù)是()A.100° B.160° C.80° D.60°二、填空題(每小題3分,共24分)11.計算的結(jié)果是.12.如圖所示,一次函數(shù)y=kx+b的圖象與x軸的交點為(-2,0①y的值隨x的值的增大而增大;②b>0;③關(guān)于x的方程kx+b=0的解為x=-2.其中說法正確的有______(只寫序號)13.反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點,且關(guān)于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________.14.已知如圖所示,AB=AD=5,∠B=15°,CD⊥AB于C,則CD=___.15.已知菱形的兩條對角線長分別為1和4,則菱形的面積為______.16.已知,為實數(shù),且滿足,則_____.17.某市出租車的收費標準是:千米以內(nèi)(包括千米)收費元,超過千米,每增加千米加收元,則當路程是(千米)()時,車費(元)與路程(千米)之間的關(guān)系式(需化簡)為:________.18.2-1=_____________三、解答題(共66分)19.(10分)如圖,矩形OBCD位于直角坐標系中,點B(,0),點D(0,m)在y軸正半軸上,點A(0,1),BE⊥AB,交DC的延長線于點E,以AB,BE為邊作?ABEF,連結(jié)AE.(1)當m=時,求證:四邊形ABEF是正方形.(2)記四邊形ABEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.(3)若AE的中點G恰好落在矩形OBCD的邊上,直接寫出此時點F的坐標.20.(6分)矩形ABCD中,點E、F分別在邊CD、AB上,且DE=BF,∠ECA=∠FCA.(1)求證:四邊形AFCE是菱形;(2)若AB=8,BC=4,求菱形AFCE的面積.21.(6分)如圖,將一矩形紙片OABC放在平面直角坐標系中,O(1,1),A(6,1),C(1,3),動點F從點O出發(fā)以每秒1個單位長度的速度沿OC向終點C運動,運動秒時,動點E從點A出發(fā)以相同的速度沿AO向終點O運動,當點E、F其中一點到達終點時,另一點也停止運動設點E的運動時間為t:(秒)(1)OE=,OF=(用含t的代數(shù)式表示)(2)當t=1時,將△OEF沿EF翻折,點O恰好落在CB邊上的點D處①求點D的坐標及直線DE的解析式;②點M是射線DB上的任意一點,過點M作直線DE的平行線,與x軸交于N點,設直線MN的解析式為y=kx+b,當點M與點B不重合時,S為△MBN的面積,當點M與點B重合時,S=1.求S與b之間的函數(shù)關(guān)系式,并求出自變量b的取值范圍.22.(8分)先化簡,再求值,其中.23.(8分)在平面直角坐標系xOy中,直線y=﹣x+2與x軸、y軸分別交于A、B兩點,直線BC交x軸負半軸于點C,∠BCA=30°,如圖①.(1)求直線BC的解析式.(2)在圖①中,過點A作x軸的垂線交直線CB于點D,若動點M從點A出發(fā),沿射線AB方向以每秒個單位長度的速度運動,同時,動點N從點C出發(fā),沿射線CB方向以每秒2個單位長度的速度運動,直線MN與直線AD交于點S,如圖②,設運動時間為t秒,當△DSN≌△BOC時,求t的值.(3)若點M是直線AB在第二象限上的一點,點N、P分別在直線BC、直線AD上,是否存在以M、B、N、P為頂點的四邊形是菱形.若存在,請直接寫出點M的坐標;若不存在,請說明理由.24.(8分)如圖,在中,,,,AB的垂直平分線DE交AB于點D,交AC于點E,連接BE.(1)求AD的長;(2)求AE的長.25.(10分)一次函數(shù)的圖象經(jīng)過點A(2,4)和B(﹣1,﹣5)兩點.(1)求出該一次函數(shù)的表達式;(2)畫出該一次函數(shù)的圖象;(3)判斷(﹣5,﹣4)是否在這個函數(shù)的圖象上?(4)求出該函數(shù)圖象與坐標軸圍成的三角形面積.26.(10分)如圖,線段AE與BC相交于點D,BD=CD,AD=ED,CA⊥AE,∠1=30°,且AB=4cm,求線段BE的長.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】

由菱形的兩條對角線的長分別是6和8,根據(jù)菱形的面積等于對角線積的一半,即可求得答案.【詳解】解:∵菱形的兩條對角線的長分別是6和8,

∴這個菱形的面積是:×6×8=1.

故選:A.【點睛】此題考查了菱形的性質(zhì).菱形的面積等于對角線積的一半是解此題的關(guān)鍵.2、D【解析】

軸對稱圖形的定義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形的定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180度,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.【詳解】解:A、不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選:D.【點睛】此題考查中心對稱圖形,軸對稱圖形,解題關(guān)鍵在于掌握其定義3、B【解析】分析:方差是用來衡量一組數(shù)據(jù)波動大小的量,中位數(shù)、眾數(shù)、平均數(shù)是反映一組數(shù)據(jù)的集中程度詳解:由于方差反映數(shù)據(jù)的波動情況,所以要比較兩名同學在四次數(shù)學測試中誰的成績比較穩(wěn)定,應選用的統(tǒng)計量是方差.故選B.點睛:本題考查了統(tǒng)計量的選取問題,熟練掌握各統(tǒng)計量的特征是解答本題的關(guān)鍵.中位數(shù)反映一組數(shù)據(jù)的中等水平,眾數(shù)反映一組數(shù)據(jù)的多數(shù)水平,平均數(shù)反映一組數(shù)據(jù)的平均水平,方差反映一組數(shù)據(jù)的穩(wěn)定程度,方差越大越不穩(wěn)定,方差越小越穩(wěn)定.4、D【解析】

根據(jù)菱形、矩形、正方形的判定和角平分線的性質(zhì)判斷即可.【詳解】解:、兩條對角線互相平分且垂直的四邊形是菱形,故選項是假命題;、兩條對角線互相平分且相等的四邊形是矩形,故選項是假命題;、兩條對角線互相平分且垂直且相等的四邊形是正方形,故選項是假命題;、角平分線上的點到角兩邊的距離相等,故選項是真命題;故選:.【點睛】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結(jié)論兩部分組成,題設是已知事項,結(jié)論是由已知事項推出的事項,一個命題可以寫成“如果那么”形式.有些命題的正確性是用推理證實的,這樣的真命題叫做定理.5、C【解析】

欲求證是否為勾股數(shù),這里給出三邊的長,只要驗證即可.【詳解】解:、,故此選項錯誤;、不是整數(shù),故此選項錯誤;、,故此選項正確;、0.3,0.4,0.5,勾股數(shù)為正整數(shù),故此選項錯誤.故選:.【點睛】本題考查了勾股數(shù)的概念,一般是指能夠構(gòu)成直角三角形三條邊的三個正整數(shù).驗證兩條較小邊的平方和與最大邊的平方之間的關(guān)系,從而作出判斷.6、B【解析】

由四邊形ABCD為矩形,根據(jù)矩形的對角線互相平分且相等,可得OA=OB=4,又∠AOB=60°,根據(jù)有一個角為60°的等腰三角形為等邊三角形可得三角形AOB為等邊三角形,根據(jù)等邊三角形的每一個角都相等都為60°可得出∠BAO為60°,據(jù)此即可求得AB長.【詳解】∵在矩形ABCD中,BD=8,∴AO=AC,BO=BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OB=4,故選B.【點睛】本題考查了矩形的性質(zhì),等邊三角形的判定與性質(zhì),熟練掌握矩形的對角線相等且互相平分是解本題的關(guān)鍵.7、B【解析】

作AR⊥BC于R,AS⊥CD于S,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS推出BC=CD得平行四邊形ABCD是菱形,再根據(jù)根據(jù)勾股定理求出AB即可.【詳解】作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,∴AB==10(cm),故選:B.【點睛】本題主要考查菱形的判定和性質(zhì),證得四邊形ABCD是菱形是解題的關(guān)鍵.8、D【解析】

根據(jù)線段垂直平分線的性質(zhì)得出AD=BD,推出CD+BD=5,即可求出答案.【詳解】解:∵DE是AB的垂直平分線,

∴AD=DB,

∵AC=5,

∴AD+CD=5,

∴CD+BD=5,

∵BC=4,

∴△BCD的周長為:CD+BD+BC=5+4=9,

故選D.【點睛】本題考查了線段垂直平分線的性質(zhì),注意:線段垂直平分線上的點到線段兩個端點的距離相等.9、C【解析】

兩條直線的交點坐標即為這兩條直線的解析式組成的方程組的解.【詳解】解:∵直線y=3x+6與直線y=2x+4的交點坐標為(a,b),∴解為的方程組是,即.故選:C.【點睛】本題考查了一次函數(shù)與二元一次方程組的關(guān)系:任何一條直線y=kx+b都可以轉(zhuǎn)化為kx+b﹣y=0(k,b為常數(shù),k≠0)的形式,兩條直線的交點坐標即為這兩條直線的解析式組成的方程組的解.10、C【解析】試題分析:∵四邊形ABCD是平行四邊形,∴∠A=∠C,AD∥BC.∵∠A+∠C=200°,∴∠A=100°.∴∠B=180°﹣∠A=80°.故選C.二、填空題(每小題3分,共24分)11、1.【解析】

.故答案為1.12、①②③.【解析】

一次函數(shù)及其應用:用函數(shù)的觀點看方程(組)或不等式.【詳解】由圖象得:①y的值隨x的值的增大而增大;②b>0;③關(guān)于x的方程kx+b=0的解為x=-2.故答案為:①②③.【點睛】本題考查了一次函數(shù)與一元一次方程,利用一次函數(shù)的性質(zhì)、一次函數(shù)與一元一次方程的關(guān)系是解題關(guān)鍵.13、沒有實數(shù)根【解析】分析:由比例函數(shù)y=的圖象位于一、三象限得出a+4>0,A、P為該圖象上的點,且關(guān)于原點成中心對稱,得出1xy>11,進一步得出a+4>6,由此確定a的取值范圍,進一步利用根的判別式判定方程根的情況即可.詳解:∵反比例函數(shù)y=的圖象位于一、三象限,∴a+4>0,∴a>-4,∵A、P關(guān)于原點成中心對稱,PB∥y軸,AB∥x軸,△PAB的面積大于11,∴1xy>11,即a+4>6,a>1∴a>1.∴△=(-1)1-4(a-1)×=1-a<0,∴關(guān)于x的方程(a-1)x1-x+=0沒有實數(shù)根.故答案為:沒有實數(shù)根.點睛:此題綜合考查了反比例函數(shù)的圖形與性質(zhì),一元二次方程根的判別式,注意正確判定a的取值范圍是解決問題的關(guān)鍵.14、【解析】

根據(jù)等邊對等角可得∠ADB=∠B,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠DAC=30°,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得CD=AD.【詳解】∵AB=AD,∴∠ADB=∠B=15°,∴∠DAC=∠ADB+∠B=30°,又∵CD⊥AB,∴CD=AD=×5=.故答案為:.【點睛】本題考查了直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵.15、1【解析】

利用菱形的面積等于對角線乘積的一半求解.【詳解】解:菱形的面積=×1×4=1.

故答案為1.【點睛】本題考查了菱形的性質(zhì):熟練掌握菱形的性質(zhì)(菱形具有平行四邊形的一切性質(zhì);

菱形的四條邊都相等;

菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角).

記住菱形面積=ab(a、b是兩條對角線的長度).16、4【解析】

直接利用二次根式有意義的條件得出、的值,進而得出答案.【詳解】、為實數(shù),且滿足,,,則.

故答案為:.【點睛】此題主要考查了二次根式有意義的條件,正確得出、的值是解題關(guān)鍵.17、【解析】

根據(jù)題意可以寫出相應的函數(shù)關(guān)系式,本題得以解決.【詳解】由題意可得,當x>3時,y=5+(x-3)×1.2=1.2x+1.1,故答案為:y=1.2x+1.1.【點睛】本題考查一次函數(shù)的應用,解答本題的關(guān)鍵是明確題意,寫出相應的函數(shù)解析式.18、【解析】

根據(jù)負指數(shù)冪的運算法則即可解答.【詳解】原式=2-1=.【點睛】本題考查了負指數(shù)冪的運算法則,牢記負指數(shù)冪的運算法則是解答本題的關(guān)鍵.三、解答題(共66分)19、(1)證明見解析;(2)S=m(m>0);(3)滿足條件的F坐標為(,2)或(,4).【解析】

(1)只要證明△ABO≌△CBE,可得AB=BE,即可解決問題;

(2)在Rt△AOB中利用勾股定理求出AB,證明△ABO∽△CBE,利用相似三角形的性質(zhì)求出BE即可解決問題;

(3)分兩種情形I.當點A與D重合時,II.當點G在BC邊上時,畫出圖形分別利用直角三角形和等邊三角形求解即可.【詳解】解:(1)如圖1中,∵m=,B(,0),∴D(0,),∴OD=OB=,∴矩形OBCD是正方形,∴BO=BC,∵∠OBC=∠ABE=90°,∴∠ABO=∠CBE,∵∠BOA=∠BCE=90°,∴△ABO≌△CBE,∴AB=BE,∵四邊形ABEF是平行四邊形,∴四邊形ABEF是菱形,∵∠ABE=90°,∴四邊形ABEF是正方形.(2)如圖1中,在Rt△AOB中,∵OA=1,OB=,∴AB==2,∵∠OBC=∠ABE=90°,∴∠OBA=∠CBE,∵∠BOA=∠BCE=90°,∴△ABO∽△CBE,∴,∴,∴BE=m,∴S=AB?BE=m(m>0).(3)①如圖2中,當點A與D重合時,點G在矩形OBCD的邊CD上.∵tan∠ABO=,∴∠ABO=30°,在Rt△ABE中,∠BAE=∠ABO=30°,AB=2,∴AE=,∵AG=GE,∴AG=,∴G(,1),設F(m,n),則有,,∴m=,n=2,∴F(,2).②如圖3中,當點G在BC邊上時,作GM⊥AB于M.∵四邊形ABEF是矩形,∴GB=GA,∵∠GBO=90°,∠ABO=30°,∴∠ABG=60°,∴△ABG是等邊三角形,∴BG=AB=2,∵FG=BG,∴F(,4),綜上所述,滿足條件的F坐標為(,2)或(,4).【點睛】本題考查四邊形綜合題、矩形的性質(zhì)、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,屬于中考壓軸題.20、(1)證明見解析;(2)1.【解析】分析:(1)先證明四邊形AFCE是平行四邊形,再證明FA=FC,根據(jù)有一組鄰邊相等的平行四邊形是菱形得出結(jié)論;(2)設DE=x,則AE=EC=8-x,在Rt△ADE中,由勾股定理列方程求得x的值,再求菱形的面積即可.詳解:(1)∵四邊形ABCD是矩形,∴DC∥AB,DC=AB,∵DE=BF,∴EC=AF,而EC∥AF,∴四邊形AFCE是平行四邊形,由DC∥AB可得∠ECA=∠FAC,∵∠ECA=∠FCA,∴∠FAC=∠FCA,∴FA=FC,∴平行四邊形AFCE是菱形;(2)解:設DE=x,則AE=EC=8-x,在Rt△ADE中,由勾股定理得42+x2=(8-x)2,解得x=3,∴菱形的邊長EC=8-3=5,∴菱形AFCE的面積為:4×5=1.點睛:本題考查了矩形的性質(zhì)、菱形的性質(zhì)和判定、菱形的面積、勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應用.21、(1)6-t,+t;(2)①直線DE的解析式為:y=-;②【解析】

(1)由O(1,1),A(6,1),C(1,3),可得:OA=6,OC=3,根據(jù)矩形的對邊平行且相等,可得:AB=OC=3,BC=OA=6,進而可得點B的坐標為:(6,3),然后根據(jù)E點與F點的運動速度與運動時間即可用含t的代數(shù)式表示OE,OF;(2)①由翻折的性質(zhì)可知:△OPF≌△DPF,進而可得:DF=OF,然后由t=1時,DF=OF=,CF=OC-OF=,然后利用勾股定理可求CD的值,進而可求點D和E的坐標;利用待定系數(shù)可得直線DE的解析式;②先確定出k的值,再分情況計算S的表達式,并確認b的取值.【詳解】(1)∵O(1,1),A(6,1),C(1,3),∴OA=6,OC=3,∵四邊形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵動點F從O點以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點E從點A出發(fā)以相等的速度沿AO向終點O運動,∴當點E的運動時間為t(秒)時,AE=t,OF=+t,則OE=OA-AE=6-t,故答案為:6-t,+t;(2)①當t=1時,OF=1+=,OE=6-1=5,則CF=OC-OF=3-=,由折疊可知:△OEF≌△DEF,∴OF=DF=,由勾股定理,得:CD=1,∴D(1,3);∵E(5,1),∴設直線DE的解析式為:y=mx+n(k≠1),把D(1,3)和E(5,1)代入得:,解得:,∴直線DE的解析式為:y=-;②∵MN∥DE,∴MN的解析式為:y=-,當y=3時,-=3,x=(b-3)=b-4,∴CM=b-4,分三種情況:i)當M在邊CB上時,如圖2,∴BM=6-CM=6-(b-4)=11-b,DM=CM-1=b-5,∵1≤DM<5,即1≤b-5<5,∴≤b<,∴S=BM?AB=×3(11?b)=15-2b=-2b+15(≤b<);ii)當M與點B重合時,b=,S=1;iii)當M在DB的延長線上時,如圖3,∴BM=CM-6=b-11,DM=CM-1=b-5,∵DM>5,即b-5>5,∴b>,∴S=BM?AB=×3(b?11)=2b-15(b>);綜上,.【點睛】本題是四邊形和一次函數(shù)的綜合題,考查了動點的問題、矩形的性質(zhì)、全等三角形的判定與性質(zhì)等知識,解(1)的關(guān)鍵是:明確動點的時間和速度;解(2)的關(guān)鍵是:由翻折的性質(zhì)可知:△OEF≌△DEF,并采用了分類討論的思想,注意確認b的取值范圍.22、【解析】

先把分式通分,把除法轉(zhuǎn)換成乘法,再化簡,然后進行計算【詳解】解:==·=x-1當x=+1時,原式=+1-1=故答案為【點睛】本題考查了分式的混合運算-化簡求值,是中考??碱},解題關(guān)鍵在于細心計算.23、(1)y=x+2;(2),t=秒或t=+4秒時,△DSN≌△BOC;(3)M(+4)或M()或M().【解析】

(1)求出B,C的坐標,由待定系數(shù)法可求出答案;(2)分別過點M,N作MQ⊥x軸,NP⊥x軸,垂足分別為點Q,P.分兩種情況:(Ⅰ)當點M在線段AB上運動時,(Ⅱ)當點M在線段AB的延長線上運動時,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;(3)設點M(a,﹣a+2),N(b,),P(2,c),點B(0,2),分三種情況:(Ⅰ)當以BM,BP為鄰邊構(gòu)成菱形時,(Ⅱ)當以BP為對角線,BM為邊構(gòu)成菱形時,(Ⅲ)當以BM為對角線,BP為邊構(gòu)成菱形時,由菱形的性質(zhì)可得出方程組,解方程組即可得出答案.【詳解】解:(1)∵直線y=﹣x+2與x軸、y軸分別交于A、B兩點,∴x=0時,y=2,y=0時,x=2,∴A(2,0),B(0,2),∴OB=AO=2,在Rt△COB中,∠BOC=90°,∠BCA=30°,∴OC=2,∴C(﹣2,0),設直線BC的解析式為y=kx+b,代入B,C兩點的坐標得,,∴k=,b=2,∴直線BC的解析式為y=x+2;(2)分別過點M,N作MQ⊥x軸,NP⊥x軸,垂足分別為點Q,P.(Ⅰ)如圖1,當點M在線段AB上運動時,∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,∴∠BAO=∠ABO=45°,∵∠BCO=30°,∴NP=MQ=t,∵MQ⊥x軸,NP⊥x軸,∴∠NPQ=∠MQA=90°,NP∥MQ,∴四邊形NPQM是矩形,∴NS∥x軸,∵AD⊥x軸,∴AS∥MQ∥y軸,∴四邊形MQAS是矩形,∴AS=MQ=NP=t,∵NS∥x軸,AS∥MQ∥y軸,∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,∴當DS=BO=2時,△DSN≌△BOC(AAS),∵D(2,+2),∴DS=+2﹣t,∴+2﹣t=2,∴t=(秒);(Ⅱ)當點M在線段AB的延長線上運動時,如圖2,同理可得,當DS=BO=2時,△DSN≌△BOC(AAS),∵DS=t﹣(+2),∴t﹣(+2)=2,∴t=+4(秒),綜合以上可得,t=秒或t=+4秒時,△DSN≌△BOC.(3)存在以M、B、N、P為頂點的四邊形是菱形:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).∵M是直線AB在第二象限上的一點,點N,P分別在直線BC,直線AD上,∴設點M(a,﹣a+2),N(b,b+2),P(2,c),點B(0,2),(Ⅰ)當以BM,BP為鄰邊構(gòu)成菱形時,如圖3,∵∠CBO=60°,∠OBA=∠OAB=∠PAF=45°,∴∠DBA=∠MBN=∠PBN=75°,∴∠MBE=45°,∠PBF=30°,∴MB=ME,PF=AP,PB=2PF=AP,∵四邊形BMNP是菱形,∴,解得,a=﹣2﹣2,∴M(﹣2﹣2,2+4)(此時點N與點C重合),(Ⅱ)當以BP為對角線,BM為邊構(gòu)成菱形時,如圖4,過點B作EF∥x軸,ME⊥EF,NF⊥EF,同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,由四邊形BMNP是菱形和BM=BN得:,解得:a=﹣2﹣4,∴M(﹣2﹣4,2+6),(Ⅲ)當以BM為對角線,BP為邊構(gòu)成菱形時,如圖5,作NE⊥y軸,BF⊥AD,∴∠BNE=30°,∠PBF=60°,由四邊形BMNP是菱形和BN=BP得,,解得:a=﹣2+2,∴M(﹣2+2,2).綜合上以得出,當以M、B、N、P為頂點的四邊形是菱形時,點M的坐標為:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,動點問題與全等結(jié)合,菱形探究,熟練掌握相關(guān)方法是解題的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論