版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省西安市西北國(guó)棉四廠子弟中學(xué)2021年高三數(shù)學(xué)理模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.雙曲線﹣=1的漸近線與圓(x﹣3)2+y2=r2(r>0)相切,則r=()A. B.2 C.3 D.6參考答案:A【考點(diǎn)】雙曲線的簡(jiǎn)單性質(zhì);點(diǎn)到直線的距離公式.【分析】求出漸近線方程,再求出圓心到漸近線的距離,根據(jù)此距離和圓的半徑相等,求出r.【解答】解:雙曲線的漸近線方程為y=±x,即x±y=0,圓心(3,0)到直線的距離d==,∴r=.故選A.2.函數(shù)y=sin(2x+)?cos(x﹣)+cos(2x+)?sin(﹣x)的圖象的一條對(duì)稱軸方程是A.x=
B.x= C.x=π D.x=參考答案:Cy=sin(2x+)?cos(x﹣)+cos(2x+)?sin(﹣x)=sin(2x+)?cos(﹣x)+cos(2x+)?sin(﹣x),所以x=π是其一條對(duì)稱軸方程,選C.
3.榫卯是我國(guó)古代工匠極為精巧的發(fā)明,它是在兩個(gè)構(gòu)件上采用凹凸部位相結(jié)合的一種連接方式。榫卯結(jié)構(gòu)中凸出部分叫榫(或叫榫頭),已知某“榫頭”的三視圖如圖所示,則該“榫頭”的體積是()A.36B.45C.54D.63參考答案:C【分析】根據(jù)三視圖還原該幾何體,得到該幾何體為兩個(gè)相同的四棱柱拼接而成,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由三視圖還原該幾何體如下:可得,該幾何體可看作兩個(gè)相同的四棱柱拼接而成,且四棱柱底面為直角梯形,由題中數(shù)據(jù)可得,底面的上底為3,下底為6,高為3,四棱柱的高為3.因此,該幾何體的體積為.故選C【點(diǎn)睛】本題主要考查由幾何體的三視圖求幾何體的體積問題,熟記棱柱的體積公式即可,屬于??碱}型.4.若圓的半徑為3,單位向量所在的直線與圓相切于定點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),則的最大值為
.參考答案:略5.《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn)。書中有這樣一個(gè)問題,大意為:某女子善于織布,后一天比前一天織得快,而且每天增加的數(shù)量相同,已知第一天織布尺,一個(gè)月(按30天計(jì)算)總共織布尺,問每天增加的數(shù)量為多少尺?該問題的答案為(
)
A.尺
B.尺
C.尺
D.尺參考答案:試題分析:此題等價(jià)于在等差數(shù)列中,,,求由等差數(shù)列的前項(xiàng)和公式得解得故答案選考點(diǎn):等差數(shù)列.6.不等式組的解集記為D,有下列四個(gè)命題:p1:?(x,y)∈D,x+2y≥﹣2
p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3
p4:?(x,y)∈D,x+2y≤﹣1其中真命題是()A.p2,p3 B.p1,p4 C.p1,p2 D.p1,p3參考答案:C【考點(diǎn)】命題的真假判斷與應(yīng)用;二元一次不等式的幾何意義.【專題】不等式的解法及應(yīng)用;簡(jiǎn)易邏輯.【分析】作出不等式組的表示的區(qū)域D,對(duì)四個(gè)選項(xiàng)逐一分析即可.【解答】解:作出圖形如下:由圖知,區(qū)域D為直線x+y=1與x﹣2y=4相交的上部角型區(qū)域,p1:區(qū)域D在x+2y≥﹣2區(qū)域的上方,故:?(x,y)∈D,x+2y≥﹣2成立;p2:在直線x+2y=2的右上方和區(qū)域D重疊的區(qū)域內(nèi),?(x,y)∈D,x+2y≥2,故p2:?(x,y)∈D,x+2y≥2正確;p3:由圖知,區(qū)域D有部分在直線x+2y=3的上方,因此p3:?(x,y)∈D,x+2y≤3錯(cuò)誤;
p4:x+2y≤﹣1的區(qū)域(左下方的虛線區(qū)域)恒在區(qū)域D下方,故p4:?(x,y)∈D,x+2y≤﹣1錯(cuò)誤;綜上所述,p1、p2正確;故選:C.【點(diǎn)評(píng)】本題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于難題.7.在這三個(gè)函數(shù)中,當(dāng)時(shí),使恒成立的函數(shù)的個(gè)數(shù)是(
)
A.個(gè)
B.個(gè)
C.個(gè)
D.個(gè)參考答案:B8.如右圖所示是某一容器的三視圖,現(xiàn)向容器中勻速注水,容器中水面的高度隨時(shí)間變化的可能圖象是
(
)參考答案:B略9.運(yùn)行如圖所示的程序框圖,若輸出的是,則①應(yīng)為 A.n≤5
B.n≤6
C.n≤7 D.n≤8參考答案:C略10.函數(shù)在上為減函數(shù),則的取值范圍是A.
B.
C.
D.參考答案:B因?yàn)楹瘮?shù)在上為減函數(shù),則有且,解得,選B.二、填空題:本大題共7小題,每小題4分,共28分11.已知變量滿足約束條件,則的最大值是
.參考答案:12.已知中心在坐標(biāo)原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),點(diǎn)F關(guān)于直線y=x的對(duì)稱點(diǎn)在橢圓C上,則橢圓C的方程為
.參考答案:+=1【考點(diǎn)】橢圓的簡(jiǎn)單性質(zhì).【專題】計(jì)算題;方程思想;分析法;圓錐曲線的定義、性質(zhì)與方程.【分析】設(shè)橢圓的方程為+=1(a>b>0),由題意可得c=1,設(shè)點(diǎn)F(1,0)關(guān)于直線y=x的對(duì)稱點(diǎn)為(m,n),由兩直線垂直的條件:斜率之積為﹣1,以及中點(diǎn)坐標(biāo)公式,解方程可得a,b,進(jìn)而得到橢圓方程.【解答】解:設(shè)橢圓的方程為+=1(a>b>0),由題意可得c=1,即a2﹣b2=1,設(shè)點(diǎn)F(1,0)關(guān)于直線y=x的對(duì)稱點(diǎn)為(m,n),可得=﹣2,且n=?,解得m=,n=,即對(duì)稱點(diǎn)為(,).代入橢圓方程可得+=1,解得a2=,b2=,可得橢圓的方程為+=1.故答案為:+=1.【點(diǎn)評(píng)】本題考查橢圓的方程的求法,注意運(yùn)用橢圓的焦點(diǎn),以及點(diǎn)關(guān)于直線對(duì)稱,由點(diǎn)滿足橢圓方程,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.13.已知實(shí)數(shù)x,y滿足不等式組則z=x+y的最小值為.參考答案:﹣13【考點(diǎn)】簡(jiǎn)單線性規(guī)劃.【分析】作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=2x+y對(duì)應(yīng)的直線進(jìn)行平移,可得當(dāng)x=y=1時(shí),z=2x+y取得最小值.【解答】解:作出不等式組表示的平面區(qū)域:得到如圖的陰影部分,由解得B(﹣11,﹣2)設(shè)z=F(x,y)=x+y,將直線l:z=x+y進(jìn)行平移,當(dāng)l經(jīng)過點(diǎn)B時(shí),目標(biāo)函數(shù)z達(dá)到最小值,∴z最小值=F(﹣11,﹣2)=﹣13.故答案為:﹣13【點(diǎn)評(píng)】本題給出二元一次不等式組,求目標(biāo)函數(shù)的最小值,著重考查了二元一次不等式組表示的平面區(qū)域和簡(jiǎn)單的線性規(guī)劃等知識(shí),屬于基礎(chǔ)題.14.如圖所示,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn),G分別是棱BC,CC1,CD的中點(diǎn),平面α過點(diǎn)B1且與平面EFG平行,則平面α被該正方體外接球所截得的截面圓的面積為為.參考答案:【考點(diǎn)】球的體積和表面積;棱柱的結(jié)構(gòu)特征.【分析】正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,外接球的半徑為,球心到截面的距離﹣=,可得截面圓的半徑,即可得出結(jié)論.【解答】解:正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,外接球的半徑為,球心到截面的距離﹣=,∴截面圓的半徑為=,∴平面α被該正方體外接球所截得的截面圓的面積為.故答案為.15.三名學(xué)生兩位老師站成一排,則老師站在一起的概率為
。
參考答案:【知識(shí)點(diǎn)】古典概型及其概率計(jì)算公式三名學(xué)生兩位老師站成一排,有種方法,老師站在一起,共有種方法,∴老師站在一起的概率為.故答案為:.【思路點(diǎn)撥】求出三名學(xué)生兩位老師站成一排,有種方法,老師站在一起的方法,即可求出概率.
16.設(shè)向量、滿足:||=1,||=2,?()=0,則與的夾角是
.參考答案:60°【考點(diǎn)】9R:平面向量數(shù)量積的運(yùn)算.【分析】根據(jù)平面向量的數(shù)量積運(yùn)算,求出cosθ的值,即可求出夾角θ的大小.【解答】解:由||=1,||=2,?()=0,∴﹣?=0,即12﹣1×2×cosθ=0,解得cosθ=;又θ∈,∴與的夾角θ是60°.故答案為:60°.17.已知一個(gè)關(guān)于的二元線性方程組的增廣矩陣是,則=__________.參考答案:6略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過程或演算步驟18.已知曲線C的參數(shù)方程:(α為參數(shù)),曲線C上的點(diǎn)M(1,)對(duì)應(yīng)的參數(shù)α=,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)是(,),直線l過點(diǎn)P,且與曲線C交于不同的兩點(diǎn)A、B.(1)求曲線C的普通方程;(2)求|PA|?|PB|的取值范圍.參考答案:【考點(diǎn)】參數(shù)方程化成普通方程;簡(jiǎn)單曲線的極坐標(biāo)方程.【分析】(I)由橢圓參數(shù)方程可得,解得a,b.可得曲線C的參數(shù)方程,化為直角坐標(biāo)方程,再利用x=ρcosθ,y=ρsinθ,可化為極坐標(biāo)方程.(II)寫出直線l的參數(shù)方程,代入曲線C的方程,利用根與系數(shù)的關(guān)系可得:|PA|?|PB|=﹣t1t2,進(jìn)而得出.【解答】解:(I)由橢圓參數(shù)方程可得,解得a=,b=1.∴曲線C的參數(shù)方程為,其直角坐標(biāo)方程為:,可得ρ2cos2θ+2ρ2sin2θ=2.(II)點(diǎn)P的極坐標(biāo)是(,)化為直角坐標(biāo)為(0,),直線l的參數(shù)方程為,代入曲線C的方程可得:(1+sin2θ)t2+4sinθt+2=0,∴|PA|?|PB|=﹣t1t2=∈[1,2]19.某市為了宣傳環(huán)保知識(shí),舉辦了一次“環(huán)保知識(shí)知多少”的問卷調(diào)查活動(dòng)(一人答一份).現(xiàn)從回收的年齡在20~60歲的問卷中隨機(jī)抽取了n份,統(tǒng)計(jì)結(jié)果如圖表所示.組號(hào)年齡分組答對(duì)全卷的人數(shù)答對(duì)全卷的人數(shù)占本組的概率1[20,30)28b2[30,40)270.93[40,50)50.54[50,60]a0.4(1)分別求出a,b,c,n的值;(2)從第3,4組答對(duì)全卷的人中用分層抽樣的方法抽取6人,在所抽取的6人中隨機(jī)抽取2人授予“環(huán)保之星”,記X為第3組被授予“環(huán)保之星”的人數(shù),求X的分布列與數(shù)學(xué)期望.參考答案:【考點(diǎn)】離散型隨機(jī)變量及其分布列.【專題】概率與統(tǒng)計(jì).【分析】(1)根據(jù)頻率直方分布圖,通過概率的和為1,求出c,求出第3組人數(shù),然后求解b,a.(2)求出X的取值為0,1,2,以及相應(yīng)的概率,得到X的分布列,然后求解期望.【解答】(本小題滿分12分)解:(1)根據(jù)頻率直方分布圖,得(0.010+0.025+c+0.035)×10=1,解得c=0.03.…第3組人數(shù)為5÷0.5=10,所以n=10÷0.1=100.…第1組人數(shù)為100×0.35=35,所以b=28÷35=0.8.…第4組人數(shù)為100×0.35=25,所以a=25×0.4=10.…(2)因?yàn)榈?,4組答對(duì)全卷的人的比為5:10=1:2,所以第3,4組應(yīng)依次抽取2人,4人.…依題意X的取值為0,1,2.…P(X=0)=,…P(X=1)=…P(X=2)=,…所以X的分布列為:X012P所以EX=0×=.…【點(diǎn)評(píng)】本題考查頻率分布直方圖,離散型分布列以及期望,考查計(jì)算能力.20.(本小題滿分13分)從裝有2只紅球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。(1)若抽取后又放回,抽3次,①分別求恰2次為紅球的概率及抽全三種顏色球的概率;②求抽到紅球次數(shù)的數(shù)學(xué)期望。(2)若抽取后不放回,抽完紅球所需次數(shù)為的分布列及期望。
參考答案:(1)抽1次得到紅球的概率為,得白球的概率為得黑球的概率為①所以恰2次為紅色球的概率為 …………2分
抽全三種顏色的概率
…………4分②~B(3,),
…………6分
(2)的可能取值為2,3,4,5
,,…………8分
,
……
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 印紙油墨項(xiàng)目融資渠道探索
- 健身中心游泳項(xiàng)目責(zé)任豁免合同(2024年度)版B版
- CMOS圖像傳感器項(xiàng)目融資渠道探索
- 正式的二手房買賣合同
- 基于人工智能技術(shù)的教育培訓(xùn)合同
- 軟件開發(fā)外包質(zhì)量不達(dá)標(biāo)責(zé)任豁免合同
- 邊坡治理工程施工合同范本
- 東莞?jìng)€(gè)人店鋪房租賃合同范本
- 2024-2030年中國(guó)自行車頭盔行業(yè)發(fā)展前景預(yù)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 增強(qiáng)現(xiàn)實(shí)+教育培訓(xùn)服務(wù)合同
- 2025年度新能源汽車充電站運(yùn)營(yíng)權(quán)轉(zhuǎn)讓合同樣本4篇
- 第5課 隋唐時(shí)期的民族交往與交融 課件(23張) 2024-2025學(xué)年統(tǒng)編版七年級(jí)歷史下冊(cè)
- 2024年全國(guó)職業(yè)院校技能大賽高職組(生產(chǎn)事故應(yīng)急救援賽項(xiàng))考試題庫(kù)(含答案)
- 老年上消化道出血急診診療專家共識(shí)2024
- 廣東省廣州黃埔區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末物理試卷(含答案)
- 學(xué)校安全工作計(jì)劃及行事歷
- 《GMP基礎(chǔ)知識(shí)培訓(xùn)》課件
- 2025屆江蘇省無(wú)錫市天一中學(xué)高一上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析
- 數(shù)學(xué)家華羅庚課件
- 貴州茅臺(tái)酒股份有限公司招聘筆試題庫(kù)2024
- 《納米技術(shù)簡(jiǎn)介》課件
評(píng)論
0/150
提交評(píng)論