版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省祿豐縣廣通中學(xué)2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.2.函數(shù),的最小值為()A.2 B.3C. D.3.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.4.已知且,則下列不等式恒成立的是A. B.C. D.5.若實(shí)數(shù)滿足,則點(diǎn)不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知,,,則最小值是()A.10 B.9C.8 D.77.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則的最小值為()A. B.C. D.8.已知函數(shù)與,則它們的圖象交點(diǎn)個(gè)數(shù)為()A.0 B.1C.2 D.不確定9.已知等比數(shù)列滿足,,則()A. B.C. D.10.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.11.在等差數(shù)列中,,且構(gòu)成等比數(shù)列,則公差等于()A.0 B.3C. D.0或312.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點(diǎn)分別為,,P為橢圓上一點(diǎn),滿足(O為坐標(biāo)原點(diǎn)).若,則橢圓的離心率為______14.已知拋物線C:,經(jīng)過點(diǎn)P(4,1)的直線l與拋物線C相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則______15.正三棱柱的底面邊長和高均為2,點(diǎn)為側(cè)棱的中點(diǎn),連接,,則點(diǎn)到平面的距離為______.16.,若2是與的等比中項(xiàng),則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,其中第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):參考公式:,月份12345違章駕駛員人數(shù)1201051009580(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份x之間的回歸直線方程;(2)預(yù)測該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù);18.(12分)平面直角坐標(biāo)系中,曲線與坐標(biāo)軸交點(diǎn)都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點(diǎn),在圓上是否存在一點(diǎn),使得四邊形為菱形?若存在,求出此時(shí)直線的方程;若不存在,說明理由.19.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為4,離心率等于(1)求橢圓的方程(2)設(shè),若橢圓E上存在兩個(gè)不同點(diǎn)P、Q滿足,證明:直線PQ過定點(diǎn),并求該定點(diǎn)的坐標(biāo).20.(12分)已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有且僅有2個(gè)零點(diǎn),求實(shí)數(shù)的值.21.(12分)如圖,直四棱柱中,底面是邊長為的正方形,點(diǎn)在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個(gè)條件中選擇兩個(gè)作已知,使得平面,并給出證明.條件①:為的中點(diǎn);條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.22.(10分)如圖,四棱錐中,底面為正方形,底面,,點(diǎn),,分別為,,的中點(diǎn),平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】由同角公式求出,根據(jù)三角形面積公式求出,根據(jù)余弦定理求出,根據(jù)正弦定理求出.【題目詳解】因?yàn)?,所以,因?yàn)?,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【題目點(diǎn)撥】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎(chǔ)題.2、B【解題分析】求導(dǎo)函數(shù),分析單調(diào)性即可求解最小值【題目詳解】由,得,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增∴當(dāng)時(shí),取得最小值,且最小值為故選:B.3、D【解題分析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【題目詳解】由題意可知,即,因?yàn)樗械幕臼录灿蟹N,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D4、C【解題分析】∵且,∴∴選C5、B【解題分析】作出給定的不等式組表示的平面區(qū)域,觀察圖形即可得解.【題目詳解】因?qū)崝?shù)滿足,作出不等式組表示的平面區(qū)域,如圖中陰影部分,觀察圖形知,陰影區(qū)域不過第二象限,即點(diǎn)不可能落在第二象限.故選:B6、B【解題分析】利用題設(shè)中的等式,把的表達(dá)式轉(zhuǎn)化成展開后,利用基本不等式求得的最小值【題目詳解】∵,,,∴=,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立故選:B7、B【解題分析】設(shè)等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結(jié)果.【題目詳解】設(shè)等比數(shù)列的公比為,則,因?yàn)?,則,所以,,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故選:B.8、B【解題分析】令,判斷的單調(diào)性并計(jì)算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點(diǎn)個(gè)數(shù),得出答案.【題目詳解】令,則,由,得,∴當(dāng)時(shí),,當(dāng)時(shí),.∴當(dāng)時(shí),取得最小值,∴只有一個(gè)零點(diǎn),即與的圖象只有1個(gè)交點(diǎn).故選:B.9、D【解題分析】由已知條件求出公比的平方,然后利用即可求解.【題目詳解】解:設(shè)等比數(shù)列的公比為,因?yàn)榈缺葦?shù)列滿足,,所以,所以,故選:D.10、A【解題分析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【題目詳解】若直線的傾斜角為,則,當(dāng)時(shí),為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時(shí),傾斜角為,對(duì)A:,顯然傾斜角為鈍角;對(duì)B:,傾斜角為銳角;對(duì)C:,傾斜角為銳角;對(duì)D:不存在,此時(shí)傾斜角為直角.故選:A.11、D【解題分析】根據(jù),且構(gòu)成等比數(shù)列,利用“”求解.【題目詳解】設(shè)等差數(shù)列的公差為d,因?yàn)椋覙?gòu)成等比數(shù)列,所以,解得,故選:D12、D【解題分析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【題目詳解】曲線表示焦點(diǎn)在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點(diǎn)在軸上,長軸長為,短軸長為,離心率為,焦距為.對(duì)照選項(xiàng)可知:焦距相等.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解題分析】由可得,再結(jié)合橢圓的性質(zhì)可得為直角三角形,由題意設(shè),則,由勾股定理可得,再結(jié)合橢圓的定義可求出離心率【題目詳解】因?yàn)?,所以,所以,因?yàn)?,所以,所以為直角三角形,即,所以設(shè),則,所以,得,因?yàn)閯t,所以,所以,即離心率為,故答案為:14、9【解題分析】過A、、作準(zhǔn)線的垂線且分別交準(zhǔn)線于點(diǎn)、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進(jìn)而可求出的結(jié)果.【題目詳解】由拋物線,可知,則,所以拋物線的焦點(diǎn)坐標(biāo)為,如圖,過點(diǎn)A作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,由拋物線的定義可得,再根據(jù)為線段的中點(diǎn),而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.15、【解題分析】建立空間直角坐標(biāo)系,利用空間向量求點(diǎn)面距離的公式可以直接求出.【題目詳解】如圖,建立空間直角坐標(biāo)系,為的中點(diǎn),由已知,,,,,所以,,設(shè)平面的法向量為,,即:,取,得,,則點(diǎn)到平面的距離為.故答案為:.16、3【解題分析】根據(jù)等比中項(xiàng)列方程,結(jié)合基本不等式求得的最小值.【題目詳解】由題可得,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)37【解題分析】(1)將題干數(shù)據(jù)代入公式求出與,進(jìn)而求出回歸直線方程;(2)再第一問的基礎(chǔ)上代入求出結(jié)果.【小問1詳解】,,則,,所以回歸直線方程;【小問2詳解】令得:,故該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù)為37.18、(1);(2)存在,直線方程為或.【解題分析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關(guān)系可得,然后利用菱形的性質(zhì)可得圓心到直線的距離,即得.【小問1詳解】曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為,,設(shè)圓的方程為,則,解得.∴圓的方程為;【小問2詳解】∵圓與直線交于,兩點(diǎn),圓化為,圓心坐標(biāo)為,半徑為.∴圓心到直線的距離,解得.假設(shè)存在點(diǎn),使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗(yàn)證滿足條件.∴存在點(diǎn),使得四邊形為菱形,此時(shí)的直線方程為或.19、(1);(2)證明見解析,.【解題分析】(1)由題可得,即求;(2)設(shè)直線PQ的方程為,聯(lián)立橢圓方程,利用韋達(dá)定理法可得,即得.【小問1詳解】由題可設(shè)橢圓的方程為,則,∴,∴橢圓的方程為;【小問2詳解】當(dāng)直線PQ的斜率存在時(shí),可設(shè)直線PQ的方程為,設(shè),由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直線PQ的方程為過定點(diǎn);當(dāng)直線PQ的斜率不存在時(shí),不合題意.故直線PQ過定點(diǎn),該定點(diǎn)的坐標(biāo)為.20、(1)函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)【解題分析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用導(dǎo)數(shù)研究的單調(diào)性、極值,從而求得的值.【小問1詳解】由,得,令,得或;令,得.∴函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.【小問2詳解】∵,∴.當(dāng)時(shí),;當(dāng)時(shí),∴的單調(diào)遞減區(qū)間為,;單調(diào)遞增區(qū)間為.∴的極小值為,極大值為.當(dāng)時(shí),;當(dāng)時(shí),.又∵函數(shù)有且僅有2個(gè)零點(diǎn),∴實(shí)數(shù)的值為.21、(1)證明見解析;(2)答案見解析;(3).【解題分析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標(biāo)系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設(shè),連結(jié),,又,分別是,的中點(diǎn),∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設(shè),連結(jié).因?yàn)槠矫?,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)可知,四邊形為正方形,所以.因?yàn)椋?,兩兩垂直,如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,則,,,,,,所以,.由(1)知:平面的一個(gè)法向量為.設(shè)平面的法向量為,則,令,則.設(shè)平面與平面的夾角為,則,所以平面與平面夾角的余弦值為.22、(1),證明見解析(2)【解題分析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中子、電子及Γ輻照裝置合作協(xié)議書
- 2025年機(jī)載設(shè)備綜合測試臺(tái)合作協(xié)議書
- 2025年石材翻新護(hù)理用品合作協(xié)議書
- 建筑力學(xué)期末考試B卷試題及答案
- 2025年個(gè)人貨物運(yùn)輸協(xié)議模板(2篇)
- 2025年個(gè)人房屋設(shè)計(jì)裝修合同(4篇)
- 2025年五年級(jí)體育教師工作總結(jié)(5篇)
- 2025年儀器銷售合同標(biāo)準(zhǔn)版本(4篇)
- 2025年五年級(jí)語文備課組長工作總結(jié)范文(二篇)
- 2025年二手車車輛轉(zhuǎn)讓合同簡單版(2篇)
- DB43-T 2142-2021學(xué)校食堂建設(shè)與食品安全管理規(guī)范
- 宏觀利率篇:債券市場研究分析框架
- 橋梁頂升移位改造技術(shù)規(guī)范
- 六年級(jí)語文(上冊(cè))選擇題集錦
- 介紹人提成方案
- 天津在津居住情況承諾書
- PHOTOSHOP教案 學(xué)習(xí)資料
- 初中數(shù)學(xué)教學(xué)“教-學(xué)-評(píng)”一體化研究
- 2012年安徽高考理綜試卷及答案-文檔
- 《游戲界面設(shè)計(jì)專題實(shí)踐》課件-知識(shí)點(diǎn)5:圖標(biāo)繪制準(zhǔn)備與繪制步驟
- 自動(dòng)扶梯安裝過程記錄
評(píng)論
0/150
提交評(píng)論