肇慶市重點(diǎn)中學(xué)2024年高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
肇慶市重點(diǎn)中學(xué)2024年高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
肇慶市重點(diǎn)中學(xué)2024年高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
肇慶市重點(diǎn)中學(xué)2024年高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
肇慶市重點(diǎn)中學(xué)2024年高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

肇慶市重點(diǎn)中學(xué)2024年高二數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”2.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.拋物線的焦點(diǎn)到準(zhǔn)線的距離()A.4 B.C.2 D.4.在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則()A.5 B.6C.7 D.85.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.46.已知橢圓的離心率為,左、右焦點(diǎn)分別為、,過作軸的平行線交橢圓于、兩點(diǎn),為坐標(biāo)原點(diǎn),雙曲線的虛軸長為,且以、為頂點(diǎn),以直線、為漸近線,則橢圓的短軸長為()A. B.C. D.7.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.8.已知函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)f(x)的圖象可能是()A. B.C. D.9.已知向量,,若與共線,則實(shí)數(shù)值為()A. B.C.1 D.210.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),且,當(dāng)時,,則不等式的解集為()A. B.C. D.11.已知拋物線的焦點(diǎn)坐標(biāo)是,則拋物線的標(biāo)準(zhǔn)方程為A. B.C. D.12.在二面角的棱上有兩個點(diǎn)、,線段、分別在這個二面角的兩個面內(nèi),并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)直線,直線,若,則_______.14.已知,,且與的夾角為鈍角,則x的取值范圍是___.15.如圖所示,高爾頓釘板是一個關(guān)于概率的模型,每一黑點(diǎn)表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時,將隨機(jī)的向兩邊等概率的落下.當(dāng)有大量的小球都落下時,最終在釘板下面不同位置收集到小球.現(xiàn)有5個小球從正上方落下,則恰有3個小球落到2號位置的概率是______16.已知正數(shù)、滿足,則的最大值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(3)若對,都有成立,且存在,使成立,求實(shí)數(shù)a的取值范圍18.(12分)設(shè)雙曲線的左、右焦點(diǎn)分別為,,且,一條漸近線的傾斜角為60°(1)求雙曲線C的標(biāo)準(zhǔn)方程和離心率;(2)求分別以,為左、右頂點(diǎn),短軸長等于雙曲線虛軸長的橢圓的標(biāo)準(zhǔn)方程19.(12分)如圖,第1個圖形需要4根火柴,第2個圖形需要7根火柴,,設(shè)第n個圖形需要根火柴(1)試寫出,并求;(2)記前n個圖形所需的火柴總根數(shù)為,設(shè),求數(shù)列的前n項(xiàng)和20.(12分)如圖1,已知矩形中,,E為上一點(diǎn)且.現(xiàn)將沿著折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且,得到的圖形如圖2.(1)證明為直角三角形;(2)設(shè)動點(diǎn)M在線段上,判斷直線與平面位置關(guān)系,并說明理由.21.(12分)在平面直角坐標(biāo)系中,圓外的點(diǎn)在軸的右側(cè)運(yùn)動,且到圓上的點(diǎn)的最小距離等于它到軸的距離,記的軌跡為(1)求的方程;(2)過點(diǎn)的直線交于,兩點(diǎn),以為直徑的圓與平行于軸的直線相切于點(diǎn),線段交于點(diǎn),證明:是的中點(diǎn)22.(10分)已知圓:,直線:.圓與圓關(guān)于直線對稱(1)求圓的方程;(2)點(diǎn)是圓上的動點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)分別為、.求四邊形面積的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】由全稱命題的否定是特稱命題即得.【題目詳解】“任意”改為“存在”,否定結(jié)論即可.命題“,”的否定形式是“,”.故選:C.2、B【解題分析】求出的等價條件,結(jié)合充分條件和必要條件的定義判斷可得出結(jié)論.【題目詳解】,因“”“”且“”“”,因此,“”是“”的必要不充分條件.故選:B.3、A【解題分析】寫出拋物線的標(biāo)準(zhǔn)方程,即可確定焦點(diǎn)到準(zhǔn)線的距離.【題目詳解】由題設(shè),拋物線的標(biāo)準(zhǔn)方程為,則,∴焦點(diǎn)到準(zhǔn)線的距離為4.故選:A.4、B【解題分析】當(dāng)n為偶數(shù)時,展開式中第項(xiàng)二項(xiàng)式系數(shù)最大,當(dāng)n為奇數(shù)時,展開式中第和項(xiàng)二項(xiàng)式系數(shù)最大.【題目詳解】因?yàn)橹挥幸豁?xiàng)二項(xiàng)式系數(shù)最大,所以n為偶數(shù),故,得.故選:B5、A【解題分析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)的幾何意義,即可求出目標(biāo)函數(shù)的最大值.【題目詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因?yàn)槟繕?biāo)函數(shù),即,表示斜率為,截距為的直線,由圖可知,當(dāng)直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.6、C【解題分析】不妨取點(diǎn)在第一象限,根據(jù)橢圓與雙曲線的幾何性質(zhì),以及它們之間的聯(lián)系,可得點(diǎn)的坐標(biāo),再將其代入橢圓的方程中,解之即可【題目詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點(diǎn)在第一象限,則的坐標(biāo)為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長為故選:7、C【解題分析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【題目詳解】因?yàn)?,所以,解得故選:C8、D【解題分析】根據(jù)導(dǎo)函數(shù)正負(fù)與原函數(shù)單調(diào)性關(guān)系可作答【題目詳解】原函數(shù)在上先減后增,再減再增,對應(yīng)到導(dǎo)函數(shù)先負(fù)再正,再負(fù)再正,且原函數(shù)在處與軸相切,故可知,導(dǎo)函數(shù)圖象為D故選:D9、D【解題分析】根據(jù)空間向量共線有,,結(jié)合向量的坐標(biāo)即可求的值.【題目詳解】由題設(shè),有,,則,可得.故選:D10、D【解題分析】設(shè),則,分析可得為偶函數(shù)且,求出的導(dǎo)數(shù),分析可得在上為減函數(shù),進(jìn)而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【題目詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當(dāng)時,,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D11、D【解題分析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)得到2p=4,進(jìn)而得到方程.【題目詳解】拋物線的焦點(diǎn)坐標(biāo)是,即p=2,2p=4,故得到方程為.故答案為D.【題目點(diǎn)撥】這個題目考查了拋物線的標(biāo)準(zhǔn)方程的求法,題目較為簡單.12、C【解題分析】設(shè)這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結(jié)果.【題目詳解】設(shè)這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【題目點(diǎn)撥】本題考查利用向量的幾何運(yùn)算以及數(shù)量積研究面面角.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解題分析】根據(jù)兩直線平行可得,,即可求出【題目詳解】依題可得,,解得故答案為:14、∪【解題分析】根據(jù)題意得出且與不共線,然后根據(jù)向量數(shù)量積的定義及向量共線的條件求出x的取值范圍.【題目詳解】∵與的夾角為鈍角,且與不共線,即,且,解得,且,∴x的取值范圍是∪.故答案為:∪.15、【解題分析】先研究一個小球從正上方落下的情況,從而可求出一個小球從正上方落下落到2號位置的概率,進(jìn)而可求出5個小球從正上方落下,則恰有3個小球落到2號位置的概率【題目詳解】如圖所示,先研究一個小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號位置的有4種,所以每個球落入2號位置的概率為,所以5個小球從正上方落下,則恰有3個小球落到2號位置的概率為,故答案為:16、【解題分析】直接利用均值不等式得到答案.【題目詳解】,當(dāng)即時等號成立.故答案為【題目點(diǎn)撥】本題考查了均值不等式,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)在單減,也單減,無增區(qū)間(3)【解題分析】(1)根據(jù)分母不等于0,對數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(3)若對,都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問1詳解】解:的定義域?yàn)?,;【小?詳解】解:當(dāng)時,,恒成立,所以在和上遞減;【小問3詳解】解:若對,都有成立,即,即,令,,則,對于函數(shù),,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以,當(dāng)時,,所以,所以,故恒成立,在為減函數(shù),所以,所以,由(1)知,,所以,記,令,,則原式的值域?yàn)?,因?yàn)榇嬖?,使成立,所以,,所以,綜上,【題目點(diǎn)撥】本題考查了函數(shù)的定義域及導(dǎo)數(shù)的四則運(yùn)算,考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查了不等式恒成立問題,考查了計(jì)算能力及數(shù)據(jù)分析能力,對不等式恒成立合理變形轉(zhuǎn)化為求最值是解題關(guān)鍵.18、(1),2(2)【解題分析】(1)結(jié)合,聯(lián)立即得解;(2)由題意,即得解.【題目詳解】(1)由題意,又解得:故雙曲線C的標(biāo)準(zhǔn)方程為:,離心率為(2)由題意橢圓的焦點(diǎn)在軸上,設(shè)橢圓方程為故即橢圓方程為:19、(1),;(2).【解題分析】(1)根據(jù)題設(shè)找到規(guī)律寫出,由等差數(shù)列的定義求.(2)由等差數(shù)列前n項(xiàng)和求,再利用裂項(xiàng)相消法求.【小問1詳解】由題意知:,,,,可得每增加一個正方形,火柴增加3根,即,所以數(shù)列是以4為首項(xiàng),以3為公差的等差數(shù)列,則.【小問2詳解】由題意可知,,所以,則,所以,,即20、(1)證明見解析(2)答案不唯一,見解析【解題分析】(1)利用折疊前后的線段長度及勾股定理求證即可;(2)動點(diǎn)M滿足時和,但時兩種情況,利用線線平行或相交得到結(jié)論.【小問1詳解】在折疊前的圖中,如圖:,E為上一點(diǎn)且,則,折疊后,所以,又,所以,所以為直角三角形.小問2詳解】當(dāng)動點(diǎn)M在線段上,滿足,同樣在線段上取,使得,則,當(dāng)時,則,又且所以,且,所以四邊形為平行四邊形,所以,又平面,所以此時平面;當(dāng)時,此時,但,所以四邊形為梯形,所以與必然相交,所以與平面必然相交.綜上,當(dāng)動點(diǎn)M滿足時,平面;當(dāng)動點(diǎn)M滿足,但時,與平面相交.21、(1)(2)證明見解析【解題分析】(1)設(shè)點(diǎn),求得到圓上的最小距離為,根據(jù)題意得到,整理即可求得曲線的方程;(2)當(dāng)直線的斜率不存在時,顯然成立;當(dāng)直線的斜率存在時,設(shè)直線的方程,聯(lián)立方程組求得和,得到,結(jié)合拋物線的定義和方程求得,,結(jié)合,即可求解.【小問1詳解】解:設(shè)點(diǎn),(其中),由圓,可得圓心坐標(biāo)為,因?yàn)樵趫A外,所以到圓上的點(diǎn)的最小距離為,又由到圓上的點(diǎn)的最小距離等于它到軸的距離,可得,即,整理得,即曲線的方程為【小問2詳解】解:當(dāng)直線的斜率不存在時,可得點(diǎn)為拋物線的交點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的準(zhǔn)線與軸的交點(diǎn),顯然滿足是的中點(diǎn);當(dāng)直線的斜率存在時,設(shè)直線的方程,設(shè),,,則,聯(lián)立方程組,整理得,因?yàn)椋?,則,故,由拋物線的定義知,設(shè),可得,所以,又因?yàn)?,所以,解得,所以,因?yàn)樵诘匚锞€上,所以,即,所以,即是的中點(diǎn)22、(1)(2)【解題分析】(1)圓關(guān)于直線對稱,半徑不變,只需求出圓心對稱的坐標(biāo)即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質(zhì),一條直角邊不變時,斜邊與另外一條直角邊的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論