福建省福州市第十一中學2024學年高二上數(shù)學期末調研模擬試題含解析_第1頁
福建省福州市第十一中學2024學年高二上數(shù)學期末調研模擬試題含解析_第2頁
福建省福州市第十一中學2024學年高二上數(shù)學期末調研模擬試題含解析_第3頁
福建省福州市第十一中學2024學年高二上數(shù)學期末調研模擬試題含解析_第4頁
福建省福州市第十一中學2024學年高二上數(shù)學期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省福州市第十一中學2024學年高二上數(shù)學期末調研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正四面體的底面的中心為為的中點,則直線與所成角的余弦值為()A. B.C. D.2.拋物線y2=4x的焦點坐標是A.(0,2) B.(0,1)C.(2,0) D.(1,0)3.已知數(shù)列的通項公式為,是數(shù)列的最小項,則實數(shù)的取值范圍是()A. B.C. D.4.函數(shù)在處有極小值5,則()A. B.C.或 D.或35.以下說法:①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關關系的兩個變量的相關系數(shù)為,那么越接近于0,之間的線性相關程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.36.在等差數(shù)列中,若,則的值為()A. B.C. D.7.設函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是()A. B.C. D.8.已知雙曲線:與橢圓:有相同的焦點,且一條漸近線方程為:,則雙曲線的方程為()A. B.C. D.9.下列四個命題中為真命題的是()A.設p:1<x<2,q:2x>1,則p是q的必要不充分條件B.命題“”的否定是“”C.函數(shù)的最小值是4D.與的圖象關于直線y=x對稱10.已知各項都為正數(shù)的等比數(shù)列,其公比為q,前n項和為,滿足,且是與的等差中項,則下列選項正確的是()A. B.C D.11.已知命題p:,,則()A., B.,C., D.,12.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線方程為,則其焦點坐標為__________14.橢圓的焦距為______.15.已知數(shù)列滿足:,且,記,若,則___________.(用表示)16.點P(8,1)平分橢圓x2+4y2=4的一條弦,則這條弦所在直線的方程是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線.(1)當為何值時,直線與圓相切;(2)當直線與圓相交于、兩點,且時,求直線的方程.18.(12分)在中,,,請再從條件①、條件②這兩個條件中選擇一個作為已知,然后解答下列問題.(1)求角的大小;(2)求的面積.條件①:;條件②:.19.(12分)已知的展開式中,只有第6項的二項式系數(shù)最大(1)求n的值;(2)求展開式中含的項20.(12分)已知直線,直線經(jīng)過點且與直線平行,設直線分別與x軸,y軸交于A,B兩點.(1)求點A和B的坐標;(2)若圓C經(jīng)過點A和B,且圓心C在直線上,求圓C的方程.21.(12分)中國共產(chǎn)黨建黨100周年華誕之際,某高校積極響應黨和國家的號召,通過“增強防疫意識,激發(fā)愛國情懷”知識競賽活動,來回顧中國共產(chǎn)黨從成立到發(fā)展壯大的心路歷程,表達對建黨100周年以來的豐功偉績的傳頌.教務處為了解學生對相關知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計中位數(shù)所在區(qū)間(2)需要從參賽選手中選出6人代表學校參與省里的此類比賽,你認為怎么選最合理,并說明理由22.(10分)已知數(shù)列是等差數(shù)列,(1)求的通項公式;(2)求的最大項

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】連接,再取中點,連接,得到為直線與所成角,再解三角形即可.【題目詳解】連接,再取中點,連接,因為分別為VC,中點,則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.2、D【解題分析】的焦點坐標為,故選D.【考點】拋物線的性質【名師點睛】本題考查拋物線的定義.解析幾何是中學數(shù)學的一個重要分支,圓錐曲線是解析幾何的重要內容,它們的定義、標準方程、簡單幾何性質是我們要重點掌握的內容,一定要熟記掌握3、D【解題分析】利用最值的含義轉化為不等式恒成立問題解決即可【題目詳解】解:由題意可得,整理得,當時,不等式化簡為恒成立,所以,當時,不等式化簡為恒成立,所以,綜上,,所以實數(shù)的取值范圍是,故選:D4、A【解題分析】由題意條件和,可建立一個關于的方程組,解出的值,然后再將帶入到中去驗證其是否滿足在處有極小值,排除增根,即可得到答案.【題目詳解】由題意可得,則,解得,或.當,時,.由,得;由,得.則在上單調遞增,在上單調遞減,故在處有極大值5,不符合題意.當,時,.由,得;由,得.則在上單調遞減,在上單調遞增,故在處有極小值5,符合題意,從而故選:A.5、C【題目詳解】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據(jù)線性回歸分析中相關系數(shù)的定義:在線性回歸分析中,相關系數(shù)為r,越接近于1,相關程度越大,故④不正確;對于觀察值來說,越大,“x與y有關系”的可信程度越大,故⑤正確.故選:C【題目點撥】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.6、C【解題分析】利用等差數(shù)列性質可求得,由可求得結果.【題目詳解】由等差數(shù)列性質知:,,解得:;又,.故選:C.7、D【解題分析】由題意得當時,,根據(jù)題意作出函數(shù)的部分圖象,再結合圖象即可求出答案【題目詳解】解:當時,,又,∴當時,,∴在上單調遞增,在上單調遞減,且;又,則函數(shù)圖象每往右平移兩個單位,縱坐標變?yōu)樵瓉淼谋?,作出其大致圖象得,當時,由得,或,由圖可知,若對任意,都有,則,故選:D【題目點撥】本題主要考查函數(shù)的圖象變換,考查數(shù)形結合思想,屬于中檔題8、B【解題分析】由漸近線方程,設出雙曲線方程,結合與橢圓有相同的焦點,求出雙曲線方程.【題目詳解】∵雙曲線:的一條漸近線方程為:∴設雙曲線:∵雙曲線與橢圓有相同的焦點∴,解得:∴雙曲線的方程為.故選:B.9、D【解題分析】根據(jù)推出關系和集合的包含關系判斷A,根據(jù)全稱命題的否定形式可判斷B,根據(jù)對鉤函數(shù)性質即三角函數(shù)的性質可判斷C,根據(jù)反函數(shù)的圖像性質可判斷D.【題目詳解】解:對于選項A:是的真子集,所以命題p是q的充分不必要條件,故A錯誤;對于選項B:命題“”的否定是“”,故B錯誤;對于選項C:函數(shù),當時,,函數(shù)單調遞減,當時取最小值,故C錯誤;對于選項D:與互為反函數(shù),故圖象關于直線y=x對稱,故D正確.10、D【解題分析】根據(jù)題意求得,即可判斷AB,再根據(jù)等比數(shù)列的通項公式即可判斷C;再根據(jù)等比數(shù)列前項和公式即可判斷D.【題目詳解】解:因為各項都為正數(shù)的等比數(shù)列,,所以,又因是與的等差中項,所以,即,解得或(舍去),故B錯誤;所以,故A錯誤;所以,故C錯誤;所以,故D正確.故選:D.11、C【解題分析】由全稱命題的否定:將任意改存在并否定結論,即可寫出原命題p的否定.【題目詳解】由全稱命題的否定為特稱命題,∴是“,”.故選:C.12、D【解題分析】焦點三角形問題,可結合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關系,從而得到關系,從而求得漸近線方程.【題目詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【題目點撥】雙曲線上一點與兩焦點構成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關系二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】先將拋物線的方程轉化為標準方程的形式,即可判斷拋物線的焦點坐標為,從而解得答案.【題目詳解】解:因為拋物線方程為,即,所以,,所以拋物線的焦點坐標為,故答案為:.14、【解題分析】由求出即可.【題目詳解】可化為,設焦距為,則,則焦距故答案為:15、【解題分析】由可得,結合已知條件,利用裂項相消求和法即可得答案.【題目詳解】解:因為,所以,即,所以,因為,所以,又,所以.故答案為:.16、【解題分析】結合點差法求得正確答案.【題目詳解】橢圓方程可化為,設是橢圓上的點,是弦的中點,則,兩式相減并化簡得,即,所以弦所在直線方程為,即.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解題分析】(1)將圓的方程表示為標準方程,確定圓心坐標與半徑,利用圓心到直線的距離可求得實數(shù)的值;(2)求出圓心到直線的距離,利用、、三者滿足勾股定理可求得的方程,解出的值,即可得出直線的方程.【題目詳解】將圓C的方程配方得標準方程為,則此圓的圓心為,半徑為.(1)若直線與圓相切,則有,解得;(2)圓心到直線的距離為,由勾股定理可得,可得,整理得,解得或,故所求直線方程為或.【題目點撥】方法點睛:圓的弦長的常用求法(1)幾何法:求圓的半徑為,弦心距為,弦長為,則;(2)代數(shù)方法:運用根與系數(shù)的關系及弦長公式.18、(1)條件選擇見解析,(2)【解題分析】(1)選①,利用余弦定理求出的值,結合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問2詳解】解:由三角形的面積公式可得.19、(1)10;(2);【解題分析】(1)利用二項式系數(shù)的性質即可求出的值;(2)求出展開式的通項公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項的二項式系數(shù)最大,∴展開后一共有11項,則,解得;【小問2詳解】二項式的展開式的通項公式為,令,解得,∴展開式中含的項為20、(1),;(2).【解題分析】(1)由直線平行及所過的點,應用點斜式寫出直線方程,進而求A、B坐標.(2)由(1)求出垂直平分線方程,并聯(lián)立直線求圓心坐標,即可求圓的半徑,進而寫出圓C的方程.【小問1詳解】由題設,的斜率為,又直線與直線平行且過,所以直線為,即,令,則;令,則.所以,.【小問2詳解】由(1)可得:垂直平分線為,即,聯(lián)立,可得,即,故圓的半徑為,所以圓C的方程為.21、(1);中位數(shù)所在區(qū)間(2)選90分以上的人去參賽;答案見解析【解題分析】(1)根據(jù)頻率分布直方圖中,所有小矩形面積和為1,即可求得a值,根據(jù)各組的頻率,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論