版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024年山東省滕州市第一中學數(shù)學高三上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.2.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件3.已知為定義在上的奇函數(shù),且滿足當時,,則()A. B. C. D.4.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得5.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.06.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.37.在條件下,目標函數(shù)的最大值為40,則的最小值是()A. B. C. D.28.已知函數(shù),將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.9.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)10.已知,則()A. B. C. D.211.拋物線的準線方程是,則實數(shù)()A. B. C. D.12.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知為等比數(shù)列,是它的前項和.若,且與的等差中項為,則__________.14.有以下四個命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關于直線對稱.其中正確命題的序號為______.15.設為銳角,若,則的值為____________.16.已知函數(shù)有兩個極值點、,則的取值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知,,(1)求的最小正周期及單調遞增區(qū)間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.20.(12分)已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前項和.求證:.21.(12分)如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合..(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.22.(10分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.2、C【解題分析】
先根據(jù)直線與直線平行確定的值,進而即可確定結果.【題目詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【題目點撥】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.3、C【解題分析】
由題設條件,可得函數(shù)的周期是,再結合函數(shù)是奇函數(shù)的性質將轉化為函數(shù)值,即可得到結論.【題目詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當時,,所以,.故選:C.【題目點撥】本題考查函數(shù)的周期性,由題設得函數(shù)的周期是解答本題的關鍵,屬于基礎題.4、A【解題分析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【題目詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【題目點撥】本題考查空間直線與平面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平.5、C【解題分析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關系數(shù)的性質,可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【題目詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【題目點撥】本題以命題的真假判斷為載體考查了抽樣方法、相關系數(shù)、獨立性檢驗等知識點,屬于基礎題.6、A【解題分析】
根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結果.【題目詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【題目點撥】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結果,屬于簡單題.7、B【解題分析】
畫出可行域和目標函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【題目詳解】如圖所示,畫出可行域和目標函數(shù),根據(jù)圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【題目點撥】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學生的綜合應用能力.8、C【解題分析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【題目詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標,的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【題目點撥】本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關的問題,解題的關鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.9、A【解題分析】
通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【題目詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【題目點撥】本題主要考查樣本的數(shù)字特征,意在考查學生對這些知識的理解掌握水平.10、B【解題分析】
結合求得的值,由此化簡所求表達式,求得表達式的值.【題目詳解】由,以及,解得..故選:B【題目點撥】本小題主要考查利用同角三角函數(shù)的基本關系式化簡求值,考查二倍角公式,屬于中檔題.11、C【解題分析】
根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【題目詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【題目點撥】本題考查拋物線與準線的方程.屬于基礎題.12、C【解題分析】
利用數(shù)量積的定義可得,即可判斷出結論.【題目詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【題目點撥】本題主要考查平面向量數(shù)量積的應用,考查推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設等比數(shù)列的公比為,根據(jù)題意求出和的值,進而可求得和的值,利用等比數(shù)列求和公式可求得的值.【題目詳解】由等比數(shù)列的性質可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【題目點撥】本題考查等比數(shù)列求和,解答的關鍵就是等比數(shù)列的公比,考查計算能力,屬于基礎題.14、①【解題分析】
由三角形的正弦定理和邊角關系可判斷①;由零點存在定理和二次函數(shù)的圖象可判斷②;由,結合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點可判斷④.【題目詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯誤;④函數(shù)與的圖象,可令,即,即有和的圖象關于直線對稱,即對稱,故④錯誤.故答案為:①.【題目點撥】本題主要考查函數(shù)的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.15、【解題分析】
∵為銳角,,∴,∴,,故.16、【解題分析】
確定函數(shù)的定義域,求導函數(shù),利用極值的定義,建立方程,結合韋達定理,即可求的取值范圍.【題目詳解】函數(shù)的定義域為,,依題意,方程有兩個不等的正根、(其中),則,由韋達定理得,,所以,令,則,,當時,,則函數(shù)在上單調遞減,則,所以,函數(shù)在上單調遞減,所以,.因此,的取值范圍是.故答案為:.【題目點撥】本題考查了函數(shù)極值點問題,考查了函數(shù)的單調性、最值,將的取值范圍轉化為以為自變量的函數(shù)的值域問題是解答的關鍵,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,(2)【解題分析】
(1)根據(jù)等差中項的定義得,然后構造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結果,分組求和即可【題目詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.【題目點撥】考查等差中項的定義和分組求和的方法;中檔題.18、(1)有的把握認為是否戴口罩出行的行為與年齡有關.(2)【解題分析】
(1)根據(jù)列聯(lián)表和獨立性檢驗的公式計算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨立重復事件的概率公式即可求得結果.【題目詳解】(1)由題意可知,有的把握認為是否戴口罩出行的行為與年齡有關.(2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【題目點撥】本題主要考查獨立性檢驗及獨立重復事件的概率求法,難度一般.19、(1)的最小正周期為:;函數(shù)單調遞增區(qū)間為:;(2).【解題分析】
(1)根據(jù)誘導公式,結合二倍角的正弦公式、輔助角公式把函數(shù)的解析式化簡成余弦型函數(shù)解析式形式,利用余弦型函數(shù)的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據(jù)三角形面積公式,結合余弦定理和基本不等式進行求解即可.【題目詳解】(1)的最小正周期為:;當時,即當時,函數(shù)單調遞增,所以函數(shù)單調遞增區(qū)間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.【題目點撥】本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數(shù)學運算能力.20、(1)(2)證明見解析【解題分析】
(1)利用求得數(shù)列的通項公式.(2)先將縮小即,由此結合裂項求和法、放縮法,證得不等式成立.【題目詳解】(1)∵,令,得.又,兩式相減,得.∴.(2)∵.又∵,,∴.∴.∴.【題目點撥】本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.21、(1)證明見解析(2)存在,為中點【解題分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023八年級數(shù)學上冊 第2章 三角形2.5 全等三角形第5課時 SSS說課稿 (新版)湘教版
- 2024年九年級語文上冊 第五單元 第17課《草房子》說課稿 鄂教版
- 25《慢性子裁縫和急性子顧客》(說課稿)-2023-2024學年統(tǒng)編版語文三年級下冊
- 2024-2025學年高中物理 第一章 電磁感應 4 楞次定律說課稿 教科版選修3-2
- 2025深圳市途安汽車租賃有限公司租賃合同
- 2025地區(qū)代理合同樣式詳細版
- 2024年四年級英語下冊 Unit 5 What will you do this weekend Lesson 27說課稿 人教精通版(三起)
- 2023八年級生物下冊 第七單元 生物圈中生命的延續(xù)和發(fā)展第一章 生物的生殖和發(fā)育第2節(jié) 昆蟲的生殖和發(fā)育說課稿 (新版)新人教版
- 個人消防安裝合同范例
- 俄羅斯電梯采購合同范例
- 一人出資一人出力合伙協(xié)議范本完整版
- 2022年北京海淀區(qū)高三一模物理試題和答案
- 施工工法的編寫與申報(完整版)
- 歇后語大全500條
- 2024年北京法院聘用制審判輔助人員招聘筆試參考題庫附帶答案詳解
- 2024浙江省農發(fā)集團社會招聘筆試參考題庫附帶答案詳解
- 慢性壓力對身體健康的影響與調理方法
- 杏花鄉(xiāng)衛(wèi)生院崗位說明樣本
- 《白蛇緣起》賞析
- 蘇教版2022-2023學年三年級數(shù)學下冊開學摸底考試卷(五)含答案與解析
- 2023學年度第一學期高三英語備課組工作總結
評論
0/150
提交評論