版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
初中興趣數學篇一:數學校本課程?興趣數學?
張掖中學校本課程簡述
課程名稱:興趣數學
課程開發(fā)組成員:吳國光張克杰王悅琴
課程施行主講人:張克杰
本課程主導學科:
本課程相關學科:
數學數學
目錄
第一局部:序言
第二局部:課程目的
第三局部:課程的組織形式與施行方案
第四局部:課程內容簡介
第1課時集合中的趣題—“集合〞與“模糊數學第2課時函數中的趣題—一份購房合同第3課時函數中的趣題—孫悟空大戰(zhàn)牛魔王第4課時三角函數的趣題—直角三角形第5課時三角函數的趣題—月平均氣溫問題第6課時數列中的趣題—柯克曼女生問題第7課時數列中的趣題—數列的應用第8課時不等式性質應用趣題―兩邊夾不等式的推廣及趣例第9課時不等式性質應用趣題―均值不等式的應用第10課時立體幾何趣題—正多面體拼接構成新多面體面數問題第11課時立體幾何趣題—球在平面上的投影12課時解析幾何中的趣題―神奇的莫比烏斯圈13課時解析幾何中的趣題―最短途問題14課時排列組合中的趣題―抽屜原理15課時排列組合中的趣題―摸球游戲第16課時概率中的趣題第17課時簡易邏輯中的趣題第18課時解數學題的策略第五局部:教學方式
第六局部:課程評價
第一局部:序言
序言
數學是一門根底科學,一切自然科學都離不開數學嚴密的計算和推
理,數學也是人文科學和邏輯思維的根底。
興趣數學是以傳統的課堂教學為根底,以開放,創(chuàng)新的思維形式,
集中表達了素質教育思想,立足培養(yǎng)興趣,旨在進步成績,通過講,學,
練這一科學有效的訓練方法,培養(yǎng)學生的數學興趣和教學思維。立足基
礎知識,結合教學實際,博采眾長,寓理于例,重在思維訓練,并加以
適宜的延伸和拓展,以進步學生對數學的興趣,啟發(fā)學生的創(chuàng)造力和思
維才能,愛學,樂學,增強孩子的學習主動性,進步學生思維的敏捷性,
靈敏性,準確性和深化性是我們的宗旨和目的。
“千里之行,始于足下〞愿廣闊學生在汗水中積累知識,在靈感中啟
迪智慧,在和諧中走向成功!
第二局部:課程目的
1.啟發(fā)學生可以發(fā)現問題和提出問題,擅長獨立考慮,學會分析問題和
創(chuàng)造地解決問題;
2.能利用一次函數及其圖象解決簡單的實際問題,開展學生數學應用能
力.
3.體會數學在實際問題中的應用價值.
4.探究直角三角形在生活中應用,進一步體會三角函數在解決問題過程
中的應用。
5.通過有關數列實際應用的介紹,激發(fā)學生學習研究數列的積極性,培
養(yǎng)學生的創(chuàng)新精神和創(chuàng)造才能。它要求教師給學生提供研究的問題及背
景,讓學生自主探究知識的發(fā)生開展過程
6.理解均值不等式在日常生活中的應用,訓練學生空間想象才能,動手動腦才能,進步學習數學興趣,培養(yǎng)學生在觀察的根底上進展歸納猜測和發(fā)現的才能,進而引導學生去探求事物的內在的本質的聯絡.
第三局部:課程的組織形式與施行方案
1、組織形式:
校本課程的開課以自選班為單位安排在“地方與我校課程〞課時中進展,詳細教學時間是每周一節(jié)課,也可以進展集中安排〔如考察、社會理論等活動〕。
2、課程施行:
1〕校本課程由我校教師開發(fā),只有講義,學生不需要教材,減輕學生的經濟負擔,表達“以生為本〞的教學理念。
2〕授課教師結合我校的校本課程,根據學生層次特點、承受才能等可以適當補充材料,逐步施行,并在施行中進一步完善教材內容,發(fā)現問題,及時反思,總結經歷。
3〕任課教師精心備課,準備資料,設計好教學過程,按時上好校本課程,并及時對學生的學習情況做出評價。
4〕教學過程中所需材料、設備、設施由學校統一安排。學生需要外出調查、參觀時,由學校出面聯絡,學校指導和班主任、任課教師一起帶著學生外出,確保師生平安。
篇二:初一興趣數學及答案
1、六年級一班第一小組種樹,假設每人種5棵還剩14棵;假設每人種7棵就缺4棵。問這一小組有多少人?一共有多少棵樹?
2、小明去商店買練習本,假設買8本,可以剩下1元錢,假設買12本,還差一元錢,每本練習本多少錢?小明一共帶了多少錢?
比擬這兩次,剩下1元錢和還差一元那么兩次前相差就是2元,但是多買了12-8=4本
也就是說4本用掉2元,那么一本就是2/4=0.5元
8*0.5+1=5元或者12*0.5-1=5元
3、給同學們教打球。每兩人一組。每組分6個球,少10個;每組分4個球,少2個。共有多少組?有幾個球?共有多少組〔10-2〕÷〔6-4)
1.甲組有圖書是乙組的3倍,假設乙組給甲組6本,那么甲組的圖書是乙組的五倍,原來甲組有圖書多少本?
2.原來小明的畫片是小紅的3倍,后來兩人各買了5張,這樣小明的畫片就是小紅的2倍
1.應該學過假設了吧?
假設乙組的書有X本,那甲組有3x
5(X-6)=3x+6X=18甲有54本
2.假設小紅的是x那么小明的是3X2(X+5)=3X+5
X=5小紅有5本小明有15本
2.兩個數相除商是8,被除數.除數與商的和是170,求被除數是多少?
2.170-8=162162/(8+1)=1818*8=144
8.有一塊長方形體育場地,假設把它的長和寬各增加6米,面積將增加1236平方米,原來體育場地的周長是多少米?
9.柳叔叔買來兩筐蘋果,每筐蘋果數量一樣。甲筐賣出150個,乙筐賣出194個,剩下的蘋果甲筐是乙筐的3倍,原來兩筐各有蘋果多少個?
9.194-150=44〔個〕44/〔3-1〕=22〔個〕194+22=216〔個〕
8.1236-6*6=1200〔平方米〕1200/6*2=400〔米〕
小麗與小杰兩人騎車,同時從相距65千米的兩地相向而行,小麗的速度為15千米/時,小杰的速度為17.5米/時,問經過幾小時,他們相距32.5千米?
〔這題是放在?分類討論專題?上的,所以應該要分類討論,請高手解答,要過程,做的好的追+〕
第一種情況,兩人還沒相遇(此時兩人所走的路程之和為〔65千米-32.5千米〕
〔65千米-32.5千米〕/(15千米/時+17.5米/時)=1小時
第二種情況,兩人相遇后又各自前進至相距32.5千米.〔此時兩人所走的路程之和為65千米+32.5千米〕/〔65千米+32.5千米〕/(15千米/時+17.5米/時)=3小時
1、有一堆糖果,其中奶糖占45%,再放入16塊水果糖后,奶糖就只占25%,求奶糖塊數。
2、蘋果和梨共有77千克,假設拿出蘋果的5/11和12千克梨,剩下的蘋果數是梨的三倍,原來蘋果和梨各多少千克?
3、9棵樹,種10行,行行有3棵,請問怎么種?
4、有兩個半徑分別為6厘米、8厘米深度相等的圓柱形容器甲和乙,如今,甲容器里裝滿水倒入乙容器里,水深比乙容器的2/3低1厘米,求兩個容器的深。
1、兩個男孩各騎一輛自行車,從相距2O英里〔1英里合1.6093千米〕的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一只蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉向往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。假設每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那么,蒼蠅總共飛行了多少英里?
答案
每輛自行車運動的速度是每小時10英里,兩者將在1小時后相遇于2O英里間隔的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。
許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然后是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰馮·諾伊曼臉上露出驚奇的神色。“可是,我用的是無窮級數求和的方法.〞他解釋道
2、有位漁夫,頭戴一頂大草帽,坐在劃艇上在一條河中釣魚。河水的流動速度是每小時3英里,他的劃艇以同樣的速度順流而下?!拔业孟蛏嫌蝿澬袔子⒗?,〞他自言自語道,“這里的魚兒不愿上鉤!〞
正當他開始向上游劃行的時候,一陣風把他的草帽吹落到船旁的水中。但是,我們這位漁夫并沒有注意到他的草帽丟了,仍然向上游劃行。直到他劃行到船與草帽相距5英里的時候,他才覺察這一點。于是他立即掉轉船頭,向下游劃去,終于追上了他那頂在水中漂流的草帽。
在靜水中,漁夫劃行的速度總是每小時5英里。在他向上游或下游劃行時,一直保持這個速度不變。當然,這并不是他相對于河岸的速度。例如,當他以每小時5英里的速度向上游劃行時,河水將以每小時3英里的速度把他向下游拖去,因此,他相對于河岸的速度僅是每小時2英里;當他向下游劃行時,他的劃行速度與河水的流動速度將共同作用,使得他相對于河岸的速度為每小時8英里。
假設漁夫是在下午2時喪失草帽的,那么他找回草帽是在什么時候?
答案
由于河水的流動速度對劃艇和草帽產生同樣的影響,所以在求解這道趣題的時候可以對河水的流動速度完全不予考慮。雖然是河水在流動而河岸保持不動,但是我們可以設想是河水完全靜止而河岸在挪動。就我們所關心的劃艇與草帽來說,這種設想和上述情況毫無無差異。
既然漁夫分開草帽后劃行了5英里,那么,他當然是又向回劃行了5英里,回到草帽那兒。因此,相對于河水來說,他總共劃行了10英里。漁夫相對于河水的劃行速度為每小時5英里,所以他一定是總共花了2小時劃完這10英里。于是,他在下午4時找回了他那頂落水的草帽。
這種情況同計算地球外表上物體的速度和間隔的情況相類似。地球雖然旋轉著穿越太空,但是這種運動對它外表上的一切物體產生同樣的效應,因此對于絕大多數速度和間隔的問題,地球的這種運動可以完全不予考慮.
3、一架飛機從A城飛往B城,然后返回A城。在無風的情況下,它整個往返飛行的平均地速〔相對于地面的速度〕為每小時100英里。假設沿著從A城到B城的方向筆直地刮著一股持續(xù)的大風。假設在飛機往返飛行的整個過程中發(fā)動機的速度同往常完全一樣,這股風將對飛機往返飛行的平均地速有何影響?
懷特先生論證道:“這股風根本不會影響平均地速。在飛機從A城飛往B城的過程中,大風將加快飛機的速度,但在返回的過程中大風將以相等的數量減緩飛機的速度。〞“這似乎言之有理,〞布朗先生表示贊同,“但是,假設風速是每小時l00英里。飛機將以每小時200英里的速度從A城飛往B城,但它返回時的速度將是零!飛機根本不能飛回來!〞你能解釋這似乎矛盾的現象嗎?
答案
懷特先生說,這股風在一個方向上給飛機速度的增加量等于在另一個方向上給飛機速度的減少量。這是對的。但是,他說這股風對飛機整個往返飛行的平均地速不發(fā)生影響,這就錯了。
懷特先生的失誤在于:他沒有考慮飛機分別在這兩種速度下所用的時間。
逆風的回程飛行所用的時間,要比順風的去程飛行所用的時間長得多。其結果是,地速被減緩了的飛行過程要花費更多的時間,因此往返飛行的平均地速要低于無風時的情況。
風越大,平均地速降低得越厲害。當風速等于或超過飛機的速度時,往返飛行的平均地速變?yōu)榱?,因為飛機不能往回飛了。
5、我們大家一起來試營一家有80間套房的旅館,看看知識如何轉化為財富。
經調查得知,假設我們把每日租金定價為160元,那么可客滿;而租金每漲20元,就會失去3位客人。每間住了人的客房每日所需效勞、維修等項支出共計40元。
問題:我們該如何定價才能賺最多的錢?
答案:日租金360元。
雖然比客滿價高出200元,因此失去30位客人,但余下的50位客人還是能給我們帶來360*50=18000元的收入;扣除50間房的支出40*50=2000元,每日凈賺16000元。而客滿時凈利潤只有160*80-40*80=9600元。當然,所謂“經調查得知〞的行情實乃本人杜撰,據此入市,風險自擔。
6數學家維納的年齡,全題如下:我今年歲數的立方是個四位數,歲數的四次方是個六位數,這兩個數,剛好把十個數字0、1、2、3、4、5、6、7、8、9全都用上了,維納的年齡是多少25根。
先背50根到25米處,這時,吃了25根,還有25根,放下?;仡^再背剩下的50根,走到25米處時,又吃了25根,還有25根。再拿起地上的25根,一共50根,繼續(xù)往家走,一共25米,要吃25根,還剩25根到家。S先生、P先生、Q先生他們知道桌子的抽屜里有16張撲克牌:紅桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方塊A、5。約翰教授從這16張牌中挑出一張牌來,并把這張牌的點數告訴P先生,把這張牌的花色告訴Q先生。這時,約翰教授問P先生和Q先生:你們能從的點數或花色中推知這張牌是什么牌嗎?于是,S先生聽到如下的對話:
P先生:我不知道這張牌。
Q先生:我知道你不知道這張牌。
P先生:如今我知道這張牌了。
Q先生:我也知道了。
聽罷以上的對話,S先生想了一想之后,就正確地推出這張牌是什么牌。
請問:這張牌是什么牌?
1、問5條直線最多將平面分為多少份?
7、把繩子三折來量,井外余4米;把繩子四折來量,井外余1米。求井深和繩子各是多少?
8、一筐蘋果分給甲、乙、丙。甲分得全部蘋果的1/5加5個蘋果,乙分得全部蘋果的1/4加7個蘋果,丙分得余下蘋果的一半,最后剩下的是一筐蘋果的1/8,求這筐蘋果有多少個?
9、某工廠三個車間共有180人,第二車間人數是第一車間人數的3倍還多1人,第三車間人數是第一車間人數的一半少1人。三個車間各有多少人?
10、有人用車把米從甲地運往乙地,裝米的重車日行50千米,空車日行70千米,5日往返三次。甲乙兩地相距多少千米?
11、兄弟二人三年后的年齡和是26歲,弟弟今年的年齡恰好是兄弟二人年齡差的2倍。問,3年后兄弟二人各幾歲?
例題1:你讓工人為你工作7天,給工人的回報是一根金條。金條平分成相連的7段,你必須在每天完畢時給他們一段金條,假設只許你兩次把金條弄斷,你如何給你的工人付費?
例題2:如今小明一家過一座橋,過橋時候是黑夜,所以必須有燈。如今小明過橋要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的媽媽要8秒,小明的爺爺要12秒。每次此橋最多可過兩人,而過橋的速度依過橋最慢者而定,而且燈在點燃后30秒就會熄滅。問小明一家如何過橋?
3、一個經理有三個女兒,三個女兒的年齡加起來等于13,三個女兒的年齡乘起來等于經理自己的年齡,有一個下屬道經理的年齡,但仍不能確定經理三個女兒的年齡,這時經理說只有一個女兒的頭發(fā)是黑的,然后這個下屬就知道了經理三個女兒的年齡。請問三個女兒的年齡分別是多少?為什么?
4、有三個人去住旅館,住三間房,每一間房$10元,于是他們一共付給老板$30,第二天,老板覺得三間房只需要$25元就夠了于是叫小弟退回$5給三位客人,誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等于那三位客人每人各花了九元,于是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29??墒钱敵跛麄內齻€人一共付出$30那么還有$1呢?
5、有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全一樣,而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩對呢?
6、有一輛火車以每小時15公里的速度分開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯。假設有一只鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發(fā),碰到另一輛車后返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長間隔?
7、你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎么給紅色彈球最大的選中時機?在你的方案中,得到紅球的準確幾率是多少?
8、你有四個裝藥丸的罐子,每個藥丸都有一定的重量,被污染的藥丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的藥被污染了?
9、對一批編號為1~100,全部開關朝上(開)的燈進展以下*作:但凡1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最后為關熄狀態(tài)的燈的編號。
10、想象你在鏡子前,請問,為什么鏡子中的影像可以顛倒左右,卻不能顛倒上下?
11、一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然后關燈,假設有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。于是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?
12、兩個圓環(huán),半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?假設在大圓的外部,小圓自身轉幾周呢?
13、1元錢一瓶汽水,喝完后兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
14有3頂紅帽子,4頂黑帽子,5頂白帽子。讓10個人從矮到高站成一隊,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色?!菜宰詈笠粋€人可以看見前面9個人頭上帽子的顏色,而最前面那個人誰的帽子都看不見。如今從最后那個人開始,問他是不是知道自己戴的帽子顏色,假設他答復說不知道,就繼續(xù)問他前面那個人。假設最前面那個人一定會知道自己戴的是黑帽子。為什么165個囚犯,分別按1-5號在裝有100顆綠豆的麻袋抓綠豆,規(guī)定每人至少抓一顆,而抓得最多和最少的人將被處死,而且,他們之間不能交流,但在抓的時候,可以摸出剩下的豆子數。問他們中誰的存活幾率最大?
17假設排列著100個乒乓球,由兩個人輪流拿球裝入口袋,能拿到第100個乒乓球的人為成功者。條件是:每次拿球者至少要拿1個,但最多不能超過5個,問:假設你是最先拿球的人,你該拿幾個?以后怎么拿就能保證你能得到第100個乒乓球?
18盧姆教授說:“有一次我目睹了兩只山羊的一場殊死決斗,結果引出了一個有趣的數學問題。我的一位鄰居有一只山羊,重54磅,它已有好幾個季度在附近山區(qū)稱王稱霸。后來某個好事之徒引進了一只新的山羊,比它還要重出3磅。開始時,它們相安無事,彼此和諧相處??墒怯幸惶?,較輕的那只山羊站在陡峭的山路頂上,向它的競爭對手猛撲過去,那對手站在土丘上迎接挑戰(zhàn),而挑戰(zhàn)者顯然擁有居高臨下的優(yōu)勢。不幸的是,由于猛烈碰撞,兩只山羊都一命嗚呼了。
如今要講一講此題的奇妙之處。對飼養(yǎng)山羊頗有研究,還寫過書的喬治·阿伯克龍比說道:“通過反復實驗,我發(fā)現,動量相當于一個自20英尺高處墜落下來的30磅重物的一次撞擊,正好可以打碎山羊的腦殼,致它死命。〞假設他說得不錯,那么這兩只山羊至少要有多大的逼近速度,才能互相撞破腦殼?你能算出來嗎?
19據說有人給酒肆的老板娘出了一個難題:此人明明知道店里只有兩個舀酒的勺子,分別能舀7兩和11兩酒,卻硬要老板娘賣給他2兩酒。聰明的老板娘毫不模糊,用這兩個勺子在酒缸里舀酒,并倒來倒去,居然量出了2兩酒,聰明的你能做到嗎?
20每個飛機只有一個油箱,飛機之間可以互相加油〔注意是互相,沒有加油機〕一箱油可供一架飛機繞地球飛半圈,問題:為使至少一架飛機繞地球一圈回到起飛時的飛機場,至少需要出動幾架飛機?〔所有飛機從同一機場起飛,而且必須平安返回機場,不允許中途降落,中間沒有飛機場
有一人老婆懷孕了,他在臨死前立了個遺囑,假設生了男孩,他的遺產2/3分配給兒子,1/3分配給老婆;假設生了女孩,1/3分給女兒,2/3分給老婆。結果他老婆生了龍鳳胎,請問,這時候遺產應該怎么分配。妻子:女兒=2:1妻子:兒子=1:2
女兒:妻子:兒子=1:2:4
女兒分1/7,
妻子分2/7,
兒子分4/7
篇三:中學興趣數學教案
初一奧數教案
純熟活用幾種重要方法1.探究法2.構造法3.數形結合法4.設想法5.面積法6.反證法7.配方法8.交換法9.奇偶分析法10.分類討論法11.枚舉法12.待定系數法13.抽屜原理14.極端原理
用上述方法解決幾類題型思路1.整數問題的求解思路2.代數式問題的求解思路3.不等式問題的求解思路4.方程問題的求解思路
5.方程整數根問題的求解思路6.函數問題的求解思路7.最值問題的求解思路8.三角形問題的求解思路9.四邊形問題的求解思路10.與圓有關的問題的求解思路11.應用性問題的求解思路12.統計初步問題的求解思路13.取整函數問題的求解思路14.邏輯推理問題的求解思路幾種妙解技能1.運算性技能2.操作性技能
第一章
探究法
1.探究常從熟悉的地方開始
例1.
+
+=1
請找出6個不同的自然數,分別填入6個方框中,使這個等式成立.
解首先注意到一個熟悉的等式
+623
得
11=+22+12(2+1)
推得
11
=+nn+1n(n+1)
這說明每一個分子為1的分數〔或單位分數〕都可以寫成兩個單位分數之和.又由熟悉的式子:
1=+22
取n=2,可得
1=236
取n=3,可得
1=+12624
取n=4,可得
1=++1262520
再取n=6,可得
127422
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年直通穿板接頭行業(yè)深度研究分析報告
- 二零二五年度跨境電商倉儲配送服務承包合同3篇
- 個人銷售合同范本2024年版版B版
- 二零二五年度股權激勵計劃創(chuàng)始股東合作協議7篇
- 2025版成都存量房產買賣合同(含社區(qū)共建共享責任)4篇
- 臨時用電安全合同(2024年版)
- 二零二五年度不動產測繪與權籍調查項目合同3篇
- 2025年度藥房合作伙伴藥品銷售代理協議2篇
- 個體商戶房屋租賃合同2024年標準格式版B版
- 二零二五年度輪胎行業(yè)綠色包裝設計與生產合同4篇
- 《電影之創(chuàng)戰(zhàn)紀》課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- 開題報告-鑄牢中華民族共同體意識的學校教育研究
- 《醫(yī)院標識牌規(guī)劃設計方案》
- 夜市運營投標方案(技術方案)
- 電接點 水位計工作原理及故障處理
- 會議分組討論主持詞
- 動火作業(yè)審批表
- 新能源汽車火災事故處置程序及方法
- 教育家精神六個方面專題PPT
- 教學查房及體格檢查評分標準
評論
0/150
提交評論