八年級(jí)數(shù)學(xué)下冊(cè)課件大全7篇_第1頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)課件大全7篇_第2頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)課件大全7篇_第3頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)課件大全7篇_第4頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè)課件大全7篇_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第八年級(jí)數(shù)學(xué)下冊(cè)課件大全7篇八年級(jí)數(shù)學(xué)下冊(cè)課件大全7篇

初二數(shù)學(xué)課件怎么寫。語(yǔ)文能力是學(xué)習(xí)其他學(xué)科和科學(xué)的基礎(chǔ),也是一門重要的人文社會(huì)科學(xué),是人們相互交流思想等的工具。下面小編給大家?guī)?lái)關(guān)于八年級(jí)數(shù)學(xué)下冊(cè)課件,希望會(huì)對(duì)大家的工作與學(xué)習(xí)有所幫助。

八年級(jí)數(shù)學(xué)下冊(cè)課件篇1

教學(xué)目標(biāo)

1.使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;

2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.

教學(xué)重點(diǎn)和難點(diǎn)

一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟.

課堂教學(xué)過程設(shè)計(jì)

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問題能否應(yīng)用一元一次方程來(lái)解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?

為了回答上述這幾個(gè)問題,我們來(lái)看下面這個(gè)例題.

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來(lái)解,教師引導(dǎo),學(xué)生口述完成)

解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一.

我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系.因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程.

本節(jié)課,我們就通過實(shí)例來(lái)說(shuō)明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.

二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟

例2某面粉倉(cāng)庫(kù)存放的面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉(cāng)庫(kù)原來(lái)有多少面粉?

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來(lái)重量-運(yùn)出重量=剩余重量)

3.若設(shè)原來(lái)面粉有x千克,則運(yùn)出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?

上述分析過程可列表如下:

解:設(shè)原來(lái)有x千克面粉,那么運(yùn)出了15%x千克,由題意,得

x-15%x=42500,

所以x=50000.

答:原來(lái)有50000千克面粉.

此時(shí),讓學(xué)生討論:本題的相等關(guān)系除了上述表達(dá)形式以外,是否還有其他表達(dá)形式?若有,是什么?

(還有,原來(lái)重量=運(yùn)出重量+剩余重量;原來(lái)重量-剩余重量=運(yùn)出重量)

教師應(yīng)指出:(1)這兩種相等關(guān)系的表達(dá)形式與“原來(lái)重量-運(yùn)出重量=剩余重量”,雖形式上不同,但實(shí)質(zhì)是一樣的,可以任意選擇其中的一個(gè)相等關(guān)系來(lái)列方程;

(2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿.

依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:

(1)仔細(xì)審題,透徹理解題意.即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個(gè)合理未知數(shù);

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);

(3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個(gè)條件重復(fù)利用等;

(4)求出所列方程的解;

(5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義.

例3(投影)初一2班第一小組同學(xué)去蘋果園參加勞動(dòng),休息時(shí)工人師傅摘蘋果分給同學(xué),若每人3個(gè)還剩余9個(gè);若每人5個(gè)還有一個(gè)人分4個(gè),試問第一小組有多少學(xué)生,共摘了多少個(gè)蘋果?

(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤.并嚴(yán)格規(guī)范書寫格式)

解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得

3x+9=5x-(5-4),

解這個(gè)方程:2x=10,

所以x=5.

其蘋果數(shù)為3×5+9=24.

答:第一小組有5名同學(xué),共摘蘋果24個(gè).

學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.

(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)

三、課堂練習(xí)

1.買4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習(xí)本每本多少元?

2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元.求1978年末的儲(chǔ)蓄存款.

3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).

四、師生共同小結(jié)

首先,讓學(xué)生回答如下問題:

1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

2.列一元一次方程解應(yīng)用題的方法和步驟是什么?

3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?

依據(jù)學(xué)生的回答情況,教師總結(jié)如下:

(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗(yàn)書寫答案.其中第三步是關(guān)鍵;

(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.

五、作業(yè)

1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?

2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?

3.某廠去年10月份生產(chǎn)電視機(jī)2050臺(tái),這比前年10月產(chǎn)量的2倍還多150臺(tái).這家工廠前年10月生產(chǎn)電視機(jī)多少臺(tái)?

4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個(gè)小箱子里裝有洗衣粉多少千克?

5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù)撸坏泉?jiǎng)每人200元,二等獎(jiǎng)每人50元.求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù).

八年級(jí)數(shù)學(xué)下冊(cè)課件篇2

一、素質(zhì)教育目標(biāo)

(一)知識(shí)教學(xué)點(diǎn)

1.要求學(xué)生學(xué)會(huì)用移項(xiàng)解方程的方法.

2.使學(xué)生掌握移項(xiàng)變號(hào)的基本原則.

(二)能力訓(xùn)練點(diǎn)

由移項(xiàng)變形方法的教學(xué),培養(yǎng)學(xué)生由算術(shù)解法過渡到代數(shù)解法的解方程的基本能力.

(三)德育滲透點(diǎn)

用代數(shù)方法解方程中,滲透了數(shù)學(xué)中的化未知為已知的重要數(shù)學(xué)思想.

(四)美育滲透點(diǎn)

用移項(xiàng)法解方程明顯比用前面的方法解方程方便,體現(xiàn)了數(shù)學(xué)的方法美.

二、學(xué)法引導(dǎo)

1.教學(xué)方法:采用引導(dǎo)發(fā)現(xiàn)法發(fā)現(xiàn)法則,課堂訓(xùn)練體現(xiàn)學(xué)生的主體地位,引進(jìn)競(jìng)爭(zhēng)機(jī)制,調(diào)動(dòng)課堂氣氛.

2.學(xué)生學(xué)法:練習(xí)→移項(xiàng)法制→練習(xí)

三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

1.重點(diǎn):移項(xiàng)法則的掌握.

2.難點(diǎn):移項(xiàng)法解一元一次方程的步驟.

3.疑點(diǎn):移項(xiàng)變號(hào)的掌握.

四、課時(shí)安排

3課時(shí)

五、教具學(xué)具準(zhǔn)備

投影儀或電腦、自制膠片、復(fù)合膠片.

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

教師出示探索性練習(xí)題,學(xué)生觀察討論得出移項(xiàng)法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成.

七、教學(xué)步驟

(一)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

師提出問題:上節(jié)課我們研究了方程、方程的解和解方程的有關(guān)知識(shí),請(qǐng)同學(xué)們首先回顧上節(jié)課的有關(guān)內(nèi)容;回答下面問題.

(出示投影1)

利用等式的性質(zhì)解方程

(1);(2);

解:方程的兩邊都加7,解:方程的兩邊都減去,

得,得,

即.合并同類項(xiàng)得.

【教法說(shuō)明】通過上面兩小題,對(duì)用等式性質(zhì)解方程進(jìn)行鞏固、回憶,為講解新方法奠定基礎(chǔ).

提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項(xiàng)的規(guī)律是什么?

(二)探索新知,講授新課

投影展示上面變形的過程,用制作復(fù)合式運(yùn)動(dòng)膠片將上面的變形展示如下,讓學(xué)生觀察在變形過程中,變化的項(xiàng)的變化規(guī)律,引出新知識(shí).

(出示投影2)

師提出問題:1.上述演示中,兩個(gè)題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?

2.改變的項(xiàng)有什么變化?

學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果派代表上報(bào)教師,分四組,這樣節(jié)省時(shí)間.

師總結(jié)學(xué)生活動(dòng)的結(jié)果:大家討論的結(jié)論,有如下共同點(diǎn):①方程(1)的已知項(xiàng)從左邊移到了方程右邊,方程(2)的項(xiàng)從右邊移到了左邊;②這些位置變化的項(xiàng)都改變了原來(lái)的符號(hào).

【教法說(shuō)明】在這里的投影變化中,教師要抓住時(shí)機(jī),讓學(xué)生發(fā)現(xiàn)變化的規(guī)律,準(zhǔn)確掌握這種變化的法則,也是為以后解更復(fù)雜方程打下好的基礎(chǔ).

師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).

(三)嘗試反饋,鞏固練習(xí)

師提出問題:我們可以回過頭來(lái),想一想剛解過的兩個(gè)方程哪個(gè)變化過程可以叫做移項(xiàng).

學(xué)生活動(dòng):要求學(xué)生對(duì)課前解方程的變形能說(shuō)出哪一過程是移項(xiàng).

【教法說(shuō)明】可由學(xué)生對(duì)前面兩個(gè)解方程問題用移項(xiàng)過程,重新寫一遍,以理解解方程的步驟和格式.

對(duì)比練習(xí):(出示投影3)

解方程:(1);(2);

(3);(4).

學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.

師提出問題:用哪種方法解方程更簡(jiǎn)便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、合并同類項(xiàng)、檢驗(yàn).)

【教法說(shuō)明】這部分教學(xué)旨在于使學(xué)生學(xué)會(huì)用移項(xiàng)這一手段解方程的方法,通過學(xué)生動(dòng)手嘗試,理解解方程的步驟,從而掌握移項(xiàng)這一法則.

鞏固練習(xí):(出示投影4)

通過移項(xiàng)解下列方程,并寫出檢驗(yàn).

(1);(2);

(3);(4).

【教法說(shuō)明】這組題訓(xùn)練學(xué)生解題過程的嚴(yán)密性,故采取學(xué)生親自動(dòng)手做,四個(gè)同學(xué)板演形式完成.

(四)變式訓(xùn)練,培養(yǎng)能力

(出示投影5)

口答:

1.下面的移項(xiàng)對(duì)不對(duì)?如果不對(duì),錯(cuò)在哪里?應(yīng)怎樣改正?

(1)從,得到;

(2)從,得到;

(3)從,得到;

2.小明在解方程時(shí),是這樣寫的解題過程:;

(1)小明這樣寫對(duì)不對(duì)?為什么?

(2)應(yīng)該怎樣寫?

【教法說(shuō)明】通過以上兩題進(jìn)一步印證移項(xiàng)這種變形的規(guī)律,即“移項(xiàng)要變號(hào)”.要使學(xué)生認(rèn)清這里的移項(xiàng)是把某項(xiàng)從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時(shí)保持“左右兩邊相等”這一數(shù)學(xué)模式.

(出示投影6)

用移項(xiàng)解方程:

(1);(2);

(3);(4).

【教法說(shuō)明】這組題增加了難度,即移項(xiàng)變形是左右兩邊都有可移的項(xiàng),教學(xué)時(shí)由學(xué)生思考后再進(jìn)行解答書寫,可提醒學(xué)生先分組討論,各組由一名同學(xué)敘述解題過程,教師歸納出最嚴(yán)密最精煉的解題過程,最后全體學(xué)生都做這幾個(gè)題目.

學(xué)生活動(dòng):5分鐘競(jìng)賽:規(guī)則是分兩大組,基礎(chǔ)分100分,每組同學(xué)全對(duì)1人加10分,不全對(duì)1人減10分,互相判題,學(xué)習(xí)委員記分.

(出示投影7)

解下列方程:

(1);(2);(3);

(4);(5);(6).

【教法說(shuō)明】這組題用競(jìng)賽的形式,由學(xué)生獨(dú)立完成是為了培養(yǎng)學(xué)生的解方程的速度和能力,同時(shí)激發(fā)學(xué)生的競(jìng)爭(zhēng)意識(shí),從而達(dá)到調(diào)動(dòng)全體學(xué)生參與的目的,而互相評(píng)判更增加了課堂上的民主意識(shí).

(五)歸納小結(jié)

師:今天我們學(xué)習(xí)了解方程的變形方法,通過學(xué)習(xí)我們應(yīng)該明確兩個(gè)方面的問題:①解方程需把方程中的項(xiàng)從一邊移到另一邊,移項(xiàng)要變號(hào)這是重點(diǎn).②檢驗(yàn)要把所得未知數(shù)的值代入原方程.

八年級(jí)數(shù)學(xué)下冊(cè)課件篇3

一、素質(zhì)教育目標(biāo)

(一)知識(shí)教學(xué)點(diǎn)

1.通過本節(jié)知識(shí)的學(xué)習(xí),使學(xué)生清楚了解方程、方程的解的概念,以及解方程的含義.

2.讓學(xué)生學(xué)會(huì)根據(jù)條件列出方程.

(二)能力訓(xùn)練點(diǎn)

1.通過例2的教學(xué),培養(yǎng)學(xué)生解決數(shù)學(xué)問題的思想方法和綜合分析問題的思維能力.

2.通過例3方程的解的檢驗(yàn)問題培養(yǎng)學(xué)生準(zhǔn)確解題的能力及數(shù)學(xué)問題的嚴(yán)密性.

(三)德育滲透點(diǎn)

從已知到未知,從特殊到一般的認(rèn)識(shí)問題的方法.

(四)美育滲透點(diǎn)

通過本節(jié)課的學(xué)習(xí),學(xué)生會(huì)進(jìn)一步體會(huì)到概念中語(yǔ)言的準(zhǔn)確美與簡(jiǎn)潔美.

二、學(xué)法引導(dǎo)

1.教學(xué)方法:以嘗試指導(dǎo)為主、練習(xí)鞏固為輔,體現(xiàn)學(xué)生的主體活動(dòng),增強(qiáng)課堂上民主意識(shí)的體現(xiàn).

2.學(xué)生學(xué)法:識(shí)記→練習(xí)

三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

1.重點(diǎn):使學(xué)生了解方程的有關(guān)概念,會(huì)檢驗(yàn)方程的解,并能根據(jù)求某數(shù)的簡(jiǎn)單條件,列出某數(shù)為未知數(shù)的一元方程(僅限于一次,二次).

2.難點(diǎn):列關(guān)于某數(shù)的簡(jiǎn)單方程.

3.疑點(diǎn):關(guān)于方程解的理解.

四、課時(shí)安排

l課時(shí)

五、教具學(xué)具準(zhǔn)備

投影儀或電腦、自制膠片.

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

教師出示探索性練習(xí)題,學(xué)生討論解答,得出有關(guān)概念,教師出示鞏固性練習(xí)題,學(xué)生以多種形式完成.

七、教學(xué)步驟

(-)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

師:我們上一節(jié)共同學(xué)習(xí)了等式和等式的性質(zhì),我們知道了用“等號(hào)”表示相等關(guān)系的式子叫做等式.下面請(qǐng)同學(xué)們思考如下問題:

(出示投影1)或電腦顯示如下

1.如果,那么,為什么?(根據(jù)什么等式性質(zhì))

2.如果,那么,根據(jù)等式什么性質(zhì)?

3.如果,那么,根據(jù)等式什么性質(zhì)?

4.如果,那么,根據(jù)等式什么性質(zhì)?

師:同學(xué)們對(duì)這組問題回答的非常準(zhǔn)確,條理清楚.說(shuō)明我們掌握新知識(shí),學(xué)習(xí)新方法的勁頭很足,望同學(xué)們發(fā)揚(yáng).

(二)探索新知,講授新課

師:請(qǐng)同學(xué)們觀察上面題中等式:

;

;

;

這些等式中,象-3,6,2,-1,3,-7,5,8這些數(shù)都是已知的,我們把這些數(shù)叫做已知數(shù).

再觀察式中的也表示一個(gè)數(shù),不難發(fā)現(xiàn)它相當(dāng)于一個(gè)問號(hào)“?”,在研究它之前是未知的,像這樣的數(shù)叫做未知數(shù),像這樣的式子,我們已經(jīng)知道它是等式,因此方程就是含有未知數(shù)的等式.

師提出問題:

(1)請(qǐng)同學(xué)們把這個(gè)結(jié)果代入方程中,看一看會(huì)有什么結(jié)果?當(dāng)學(xué)生能夠回答出時(shí)方程左右兩邊相等這一結(jié)果后,引出概念:使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解,只有一個(gè)未知數(shù)的方程的解也叫方程的根.

(2)再觀察到的變形過程

a被減數(shù)等于差加上減數(shù).

得,

即.

再據(jù)一個(gè)因數(shù)等于積除以另一個(gè)因數(shù),得,即.

(說(shuō)明是小學(xué)解法)

e兩邊都加上7,得,,

即.

兩僆都除以5,得,

提出問題:上面兩種變形最終我們求出了什么?

兩種方法所得結(jié)果一樣嗎?

【教法說(shuō)明】通過上面提問由學(xué)生展開討論,教師歸納上面過程實(shí)質(zhì)上就是求方程解的過程.

師:求得方程解的過程,叫做解方程.

如:求得方程的解的兩種方法,都可以叫解方程.

(三)嘗試反饋,鞏固練習(xí)

師提出問題:現(xiàn)在請(qǐng)同學(xué)們分組討論,由各組派代表回答,如何判斷一個(gè)式子是方程?

學(xué)活動(dòng):分組討論,準(zhǔn)備派代表回答,回答結(jié)果:(1)含有未知數(shù),(2)等式.

(出示投影2)

例1判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù),如果不是,說(shuō)明為什么?

①;②;③;④.

【教法說(shuō)明】例1教學(xué)應(yīng)注意,方程必須是含有未知數(shù)的等式.未知數(shù)的系數(shù)是1,可以省寫.這個(gè)1,也是已知數(shù),已知數(shù)包括它的符號(hào).

鞏固練習(xí):

(出示投影3)

判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說(shuō)明為什么?

①;②;③;④.

【教法說(shuō)明】這組可采用分組搶答形式,用競(jìng)賽加分的辦法完成以增加學(xué)生學(xué)習(xí)的積極性,如:分成四組,班長(zhǎng)記分,教師主持.

師提出問題:如果設(shè)某數(shù)為,請(qǐng)大家把下面的句子用方程的形式表示出來(lái),看誰(shuí)做得快.

(出示投影4)

(1)某數(shù)的與1的和是2;

(2)某數(shù)的4倍等于某數(shù)的3倍與7的差;

(3)某數(shù)與8的差的等于0.

學(xué)生活動(dòng):學(xué)生動(dòng)筆動(dòng)腦分析得出方程,由一個(gè)學(xué)生寫在黑板上,如:

(1);(4);(3).

【教法說(shuō)明】為了使學(xué)生掌握,③小題應(yīng)提醒學(xué)生注意運(yùn)算的順序,必要時(shí)加上括號(hào).另外有時(shí)得出方程可有形式上的區(qū)別.

師提出問題:請(qǐng)同學(xué)們選擇適當(dāng)?shù)奈粗獢?shù),列出例2中的方程:

(出示投影5)

例2根據(jù)下列條件列出方程:

(1)某數(shù)比它的大;

(2)某數(shù)比它的2倍小3;

(3)某數(shù)的一半比某數(shù)的3倍大4;

(4)某數(shù)比它的平方小42.

學(xué)生活動(dòng):要求學(xué)生獨(dú)立完成上面的題目,完成后與小組同學(xué)討論,對(duì)比,分組說(shuō)出所列方程中,形式不一樣地方.

【教法說(shuō)明】教師可布置學(xué)生自編兩個(gè)題目,留給同桌同學(xué)列方程,找代表說(shuō)一說(shuō)題目和方程.

(四)變式訓(xùn)練,培養(yǎng)能力

(出示投影6)

1.下列各式是不是方程,如果是,指出它的未知數(shù)是什么?

①;②;③;④;⑥;

⑦;⑧;⑨;⑩.

【教法說(shuō)明】這組題用小組競(jìng)賽的形式完成,優(yōu)勝組負(fù)責(zé)編一個(gè)這樣的題目,點(diǎn)其他組任一同學(xué)解答,答對(duì)者給以掌聲鼓勵(lì).

(出示投影7)

2.請(qǐng)同學(xué)們用兩種方法,求出下面方程的解.

①;②;③;④.

【教法說(shuō)明】這組題由學(xué)生在練習(xí)本上演練,教師指定學(xué)生口述,征求全體同學(xué)意見.

(出示投影8)

3.請(qǐng)同學(xué)們選用適當(dāng)?shù)奈粗獢?shù),寫一個(gè)方程使方程的解是下面的數(shù):

(1)1;(2)-2;(3)0;(4)2.

學(xué)生活動(dòng):分組編寫,互相交換,觀察所作方程的特征,互相交流經(jīng)驗(yàn)、方法,增強(qiáng)協(xié)作意識(shí).

【教法說(shuō)明】這組題難度較大,教師在學(xué)生編題時(shí)要注意后進(jìn)生的動(dòng)態(tài),多啟發(fā)他們動(dòng)腦筋,開發(fā)數(shù)學(xué)的逆向思維.

(五)歸納小結(jié)

師:本課內(nèi)容與前兩節(jié)內(nèi)容的聯(lián)系,可以用下圖表示:

也就是說(shuō),方程是含有未知數(shù)的等式,可以用等式的性質(zhì)來(lái)解方程.

八年級(jí)數(shù)學(xué)下冊(cè)課件篇4

一、教材分析:

反比例函數(shù)的圖象與性質(zhì)是對(duì)正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對(duì)比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對(duì)函數(shù)的圖象與性質(zhì)一個(gè)再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對(duì)反比例函數(shù)有一個(gè)形象和直觀的認(rèn)識(shí)。

二、教學(xué)目標(biāo)分析

根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動(dòng)探索。

因此把教學(xué)目標(biāo)確定為:1.掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會(huì)用描點(diǎn)法畫出反比例函數(shù)的圖象;掌握?qǐng)D象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。2.在教學(xué)過程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。3.通過學(xué)習(xí)培養(yǎng)學(xué)生積極參與和勇于探索的精神。

三、教學(xué)重點(diǎn)難點(diǎn)分析

本堂課的重點(diǎn)是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);

難點(diǎn)則是如何抓住特征準(zhǔn)確畫出反比例函數(shù)的圖象。

為了突出重點(diǎn)、突破難點(diǎn)。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。

四、教學(xué)方法

鑒于教材特點(diǎn)及初二學(xué)生的年齡特點(diǎn)、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法

和對(duì)比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對(duì)新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來(lái),組織學(xué)生參與“探究——討論——交流——總結(jié)”的學(xué)習(xí)活動(dòng)過程,同時(shí)在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺思維能力。

五、學(xué)法指導(dǎo)

本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動(dòng)手,多觀察,從而可以幫助學(xué)生形成分析、

對(duì)比、歸納的思想方法。在對(duì)比和討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識(shí)去主動(dòng)獲取新知識(shí)的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動(dòng)參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會(huì)參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。

六、教學(xué)過程

(一)復(fù)習(xí)引入——反函數(shù)解析式

練習(xí)1:寫出下列各題的關(guān)系式:

(1)正方形的周長(zhǎng)C和它的一邊的長(zhǎng)a之間的關(guān)系

(2)運(yùn)動(dòng)會(huì)的田徑比賽中,運(yùn)動(dòng)員小王的平均速度是8米/秒,他所跑過的路程s和所用時(shí)間t之間的關(guān)系

(3)矩形的面積為10時(shí),它的長(zhǎng)x和寬y之間的關(guān)系

(4)王師傅要生產(chǎn)100個(gè)零件,他的工作效率x和工作時(shí)間t之間的關(guān)系

問題1:請(qǐng)大家判斷一下,在我們寫出來(lái)的這些關(guān)系式中哪些是正比例函數(shù)?

問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運(yùn)用對(duì)比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。

問題2:那么請(qǐng)大家再仔細(xì)觀察一下,其余兩個(gè)函數(shù)關(guān)系式有什么共同點(diǎn)嗎?

通過問題2來(lái)引出反比例函數(shù)的解析式,請(qǐng)學(xué)生對(duì)比正比例函數(shù)的定

義來(lái)給出反比例函數(shù)的定義,這不僅有助于對(duì)舊知識(shí)的復(fù)習(xí)和鞏固,同時(shí)還可以培養(yǎng)學(xué)生的對(duì)比和探究能力。

例題1:已知變量y與x成反比例,且當(dāng)x=2時(shí),y=9

(1)寫出y與x之間的函數(shù)解析式

(2)當(dāng)x=3.5時(shí),求y的值

(3)當(dāng)y=5時(shí),求x的值

通過對(duì)例1的學(xué)習(xí)使學(xué)生掌握如何根據(jù)已知條件來(lái)求出反比例函數(shù)的解析式。在

解題過程中,引導(dǎo)學(xué)生運(yùn)用在求正比例函數(shù)的解析式時(shí)用到的“待定系數(shù)法”,先設(shè)反比例函數(shù)為,再把相應(yīng)的x,y值代入求出k,k值的確定,函數(shù)解析式也就確定了。

課堂練習(xí):已知x與y成反比例,根據(jù)以下條件,求出y與x之間的函數(shù)關(guān)系式

(1)x=2,y=3(2)x=,y=

通過此題,對(duì)學(xué)生掌握如何根據(jù)已知條件去求反比例函數(shù)的解析式的學(xué)習(xí)情況做一個(gè)簡(jiǎn)單的反饋。

(二)探究學(xué)習(xí)1——函數(shù)圖象的畫法

問題3:如何畫出正比例函數(shù)的圖象?

通過問題3來(lái)復(fù)習(xí)正比例函數(shù)圖象的畫法主要分為列表、描點(diǎn)、連線三個(gè)步驟,為學(xué)習(xí)反比例函數(shù)圖像的畫法打下基礎(chǔ)。

問題4:那反比例函數(shù)的圖象應(yīng)該怎樣去畫呢?

在教學(xué)過程中可以引導(dǎo)學(xué)生仿照正比例函數(shù)圖象的的畫法。

設(shè)想的教學(xué)設(shè)計(jì)是:

(1)引導(dǎo)學(xué)生運(yùn)用在畫正比例函數(shù)圖象中所學(xué)到的方法,分小組討論嘗試,采用列表、描點(diǎn)、連線的方法畫出函數(shù)和的圖象;

(2)老師邊巡視,邊指導(dǎo),用實(shí)物投影儀反映一些學(xué)生在函數(shù)圖象中出現(xiàn)的典型錯(cuò)誤,和學(xué)生一起找出錯(cuò)誤的地方,分析原因;

(3)隨后老師在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導(dǎo)學(xué)生觀察其圖象特征(雙曲線有兩個(gè)分支)。

初二學(xué)生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設(shè)想學(xué)生可能會(huì)在下面幾個(gè)環(huán)節(jié)中出錯(cuò):

(1)在“列表”這一環(huán)節(jié)

在取點(diǎn)時(shí)學(xué)生可能會(huì)取零,在這里可以引導(dǎo)學(xué)生結(jié)合代數(shù)的方法得出x不能為零。也可能由于在取點(diǎn)時(shí)的不恰當(dāng),導(dǎo)致函數(shù)圖象的不完整、不對(duì)稱。在這里應(yīng)該要指導(dǎo)學(xué)生在列表時(shí),自變量x的取值可以選取絕對(duì)值相等而符號(hào)相反的數(shù),相應(yīng)的就得到絕對(duì)相等而符號(hào)相反的對(duì)應(yīng)的函數(shù)值,這樣可以簡(jiǎn)化計(jì)算的手續(xù),又便于在坐標(biāo)平面內(nèi)找到點(diǎn)。

(2)在“連線”這一環(huán)節(jié)

學(xué)生畫的點(diǎn)與點(diǎn)之間連線可能會(huì)有端點(diǎn),未能用光滑的線條連接。因而在這里要特別要強(qiáng)調(diào)在將所選取的點(diǎn)連結(jié)時(shí),應(yīng)該是“光滑曲線”,為以后學(xué)習(xí)二次函數(shù)的圖像打下基礎(chǔ)。為了使函數(shù)圖象清晰明顯,可以引導(dǎo)學(xué)生注意盡量選取較多的自變量x的值和對(duì)應(yīng)的函數(shù)值y,以便在坐標(biāo)平面內(nèi)得到較多的“點(diǎn)”,畫出曲線。

從而引導(dǎo)學(xué)生畫出正確的函數(shù)圖象。

(3)圖象與x軸或y軸相交

在這里我認(rèn)為可以埋下一個(gè)伏筆,給學(xué)生留下一個(gè)懸念,為后面學(xué)習(xí)函數(shù)的性質(zhì)打下基礎(chǔ)。

需要說(shuō)明的是:利用多媒體課件學(xué)習(xí)能吸引學(xué)生的注意力,引起學(xué)生進(jìn)一步學(xué)習(xí)的興趣。不過,盡管多媒體的演示既快又準(zhǔn)確,我認(rèn)為在學(xué)生第學(xué)畫反比例函數(shù)圖象的過程中,老師還是應(yīng)該在黑板上認(rèn)真示范畫出圖象的每一個(gè)步驟,畢竟多媒體還是不能替代我們平時(shí)老師在黑板上板書。

鞏固練習(xí):畫出函數(shù)和的圖象

通過鞏固練習(xí),讓學(xué)生再次動(dòng)手畫出函數(shù)圖象,改正在初次畫圖象時(shí)出現(xiàn)在一些問題。老師使用函數(shù)圖象的課件,用屏幕顯示的函數(shù)圖象驗(yàn)證學(xué)生畫出的函數(shù)圖象的準(zhǔn)確性。

(三)探究學(xué)習(xí)2——函數(shù)圖象性質(zhì)

1、圖象的分布情況

問題5:請(qǐng)大家回憶一下正比例函數(shù)的分布情況是怎么樣的呢?

提出問題5主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的分布情況打下基礎(chǔ)。

問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?

在這一環(huán)節(jié)中的設(shè)計(jì):

(1)引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;

(2)充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;

(3)組織小組討論來(lái)歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。

2、圖象的變化情況

問題7:正比例函數(shù)圖象的變化情況是怎么樣的呢?

提出問題7主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的變化情況打下基礎(chǔ)。

問題8:那反比例函數(shù)的圖象,是否也具有這樣的性質(zhì)呢?

在這一環(huán)節(jié)的教學(xué)設(shè)計(jì)是:

(1)回顧反比例函數(shù)和的圖象,通過實(shí)際觀察;

(2)根據(jù)解析式對(duì)行取值,比較x在取不同值時(shí)函數(shù)值的變化情況;

(3)電腦演示及學(xué)生小組討論,請(qǐng)學(xué)生給出結(jié)論。即這個(gè)問題必須分成兩種情況討論即當(dāng)k0時(shí),自變量x逐漸增大時(shí),y的值則隨著逐漸減?。划?dāng)k0時(shí),自變量x逐漸增大時(shí),y的值也隨著逐漸增大。

(4)對(duì)于學(xué)生做出的結(jié)論,老師應(yīng)該要給予肯定,同時(shí)可以提出:有沒有同學(xué)需要補(bǔ)充的呢?若沒有,則可以舉例:當(dāng)k0,分別比較在第三象限x=-2,第一象限x=2時(shí)的y的值的大小,則以上性質(zhì)是否依然成立?學(xué)生的回答應(yīng)該是:不成立。這時(shí)老師再請(qǐng)學(xué)生做小結(jié):必須限定在每一個(gè)象限內(nèi),才有以上性質(zhì)成立。

問題9:當(dāng)函數(shù)圖象的兩個(gè)分支無(wú)限延伸時(shí),它與x軸、y軸相交嗎?為什么?

在這個(gè)環(huán)節(jié)中,可以結(jié)合剛才學(xué)生所畫的錯(cuò)誤圖象,引導(dǎo)學(xué)生可以通過代數(shù)的方法分析反比例函數(shù)的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗(yàn)證了反比例函數(shù)的圖象。當(dāng)兩個(gè)分支無(wú)限延伸時(shí),可以無(wú)限地逼近x軸、y軸,但永遠(yuǎn)不會(huì)與兩軸相交。隨即強(qiáng)調(diào)畫圖時(shí)要注意準(zhǔn)確性。

(四)備用思考題

1、反比例函數(shù)的圖象在第一、三象限,求a的取值范圍

2、

(1)當(dāng)m為何值時(shí),y是x的正比例函數(shù)

(2)當(dāng)m為何值時(shí),y是x的反比例函數(shù)

(五)小結(jié):

八年級(jí)數(shù)學(xué)下冊(cè)課件篇5

一、教材分析

(一)教材地位

這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)教學(xué)目標(biāo)

知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問題.

過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

二、教法與學(xué)法分析:

學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

三、教學(xué)過程設(shè)計(jì)1.創(chuàng)設(shè)情境,提出問題2.實(shí)驗(yàn)操作,模型構(gòu)建3.回歸生活,應(yīng)用新知

4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)

(一)創(chuàng)設(shè)情境提出問題

(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

(2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火

設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

二、實(shí)驗(yàn)操作模型構(gòu)建

1.等腰直角三角形(數(shù)格子)

2.一般直角三角形(割補(bǔ))

問題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

問題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無(wú)形中得到提高.

通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.

三.回歸生活應(yīng)用新知

讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心.

四、知識(shí)拓展鞏固深化

基礎(chǔ)題,情境題,探索題.

設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說(shuō)明。

設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么

作業(yè):1、課本習(xí)題2.12、搜集有關(guān)勾股定理證明的資料.

板書設(shè)計(jì)探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設(shè)計(jì)說(shuō)明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.

八年級(jí)數(shù)學(xué)下冊(cè)課件篇6

一、教材分析:勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。

教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:1、理解并掌握勾股定理及其證明。2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。4、通過介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國(guó)與熱愛祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

二、教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

三、教學(xué)難點(diǎn):勾股定理的證明。

四、教法和學(xué)法:教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論