版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省泰興市城黃北區(qū)教研中學心九年級數(shù)學第一學期期末達標測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.某同學推鉛球,鉛球出手高度是m,出手后鉛球運行高度y(m)與水平距離x(m)之間的函數(shù)表達式為,則該同學推鉛球的成績?yōu)椋ǎ〢.9m B.10m C.11m D.12m2.下列四個銀行標志中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.3.已知二次函數(shù),下列說法正確的是()A.該函數(shù)的圖象的開口向下 B.該函數(shù)圖象的頂點坐標是C.當時,隨的增大而增大 D.該函數(shù)的圖象與軸有兩個不同的交點4.一個布袋里裝有2個紅球、3個黃球和5個白球,除顏色外其它都相同,攪勻后任意摸出一個球,是白球的概率為()A. B. C. D.5.已知反比例函數(shù)y=的圖象如圖所示,則二次函數(shù)y=ax2-2x和一次函數(shù)y=bx+a在同一平面直角坐標系中的圖象可能是()A. B. C. D.6.已知等腰三角形ABC中,腰AB=8,底BC=5,則這個三角形的周長為()A.21 B.20 C.19 D.187.若將拋物線的函數(shù)圖象先向右平移1個單位,再向下平移2個單位后,可得到一個新的拋物線的圖象,則所得到的新的拋物線的解析式為()A. B.C. D.8.小明隨機地在如圖正方形及其內(nèi)部區(qū)域投針,則針扎到陰影區(qū)域的概率是()A. B. C. D.9.小麗參加學?!皯c元旦,迎新年演唱比賽,賽后小麗把七位評委所合的分數(shù)進行處理,得到平均數(shù)、中位數(shù),眾數(shù),方差,如果把這七個數(shù)據(jù)去掉一個最高分和一個最低分,則數(shù)據(jù)一定不發(fā)發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.方差 D.中位數(shù)10.如圖,是等邊三角形,且與軸重合,點是反比例函數(shù)的圖象上的點,則的周長為()A. B. C. D.11.袋中裝有除顏色外其他完全相同的4個小球,其中3個紅色,一個白色,從袋中任意地摸出兩個球,這兩個球顏色相同的概率是()A. B. C. D.12.下列事件中,是隨機事件的是()A.任意一個五邊形的外角和等于540°B.通常情況下,將油滴入水中,油會浮在水面上C.隨意翻一本120頁的書,翻到的頁碼是150D.經(jīng)過有交通信號燈的路口,遇到綠燈二、填空題(每題4分,共24分)13.如圖,平行四邊形中,,,,點E在AD上,且AE=4,點是AB上一點,連接EF,將線段EF繞點E逆時針旋轉(zhuǎn)120°得到EG,連接DG,則線段DG的最小值為____________________.14.如圖,要測量池塘兩岸相對的A,B兩點間的距離,可以在池塘外選一點C,連接AC,BC,分別取AC,BC的中點D,E,測得DE=50m,則AB的長是_______m.15.小明制作了一張如圖所示的賀卡.賀卡的寬為,長為,左側(cè)圖片的長比寬多.若,則右側(cè)留言部分的最大面積為_________.16.分解因式:4x3﹣9x=_____.17.如圖,河壩橫斷面迎水坡AB的坡比是1:(坡比是坡面的鉛直高度BC與水平寬度AC之比),壩高BC=3m,則坡面AB的長度是.18.如圖已知二次函數(shù)y1=x2+c與一次函數(shù)y2=x+c的圖象如圖所示,則當y1<y2時x的取值范圍_____.三、解答題(共78分)19.(8分)已知關(guān)于的方程.(1)求證:無論為何值,該方程都有兩個不相等的實數(shù)根;(2)若該方程的一個根為-1,則另一個根為.20.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),拋物線的對稱軸x=1,與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.(1)求這個二次函數(shù)的解析式及A、B點的坐標.(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形;若存在,請求出此時點P的坐標;若不存在,請說明理由.(3)當點P運動到什么位置時,四邊形ABPC的面積最大;求出此時P點的坐標和四邊形ABPC的最大面積.21.(8分)計算:cos30°?tan60°+4sin30°.22.(10分)如圖,AB是⊙O的弦,AB=4,點P在上運動(點P不與點A、B重合),且∠APB=30°,設(shè)圖中陰影部分的面積為y.(1)⊙O的半徑為;(2)若點P到直線AB的距離為x,求y關(guān)于x的函數(shù)表達式,并直接寫出自變量x的取值范圍.23.(10分)已知關(guān)于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β(1)求m的取值范圍;(2)若α+β+αβ=1.求m的值.24.(10分)采用東陽南棗通過古法熬制而成的蜜棗是我們東陽的土特產(chǎn)之一,已知蜜棗每袋成本10元.試銷后發(fā)現(xiàn)每袋的銷售價(元)與日銷售量(袋)之間的關(guān)系如下表:(元)152030…(袋)252010…若日銷售量是銷售價的一次函數(shù),試求:(1)日銷售量(袋)與銷售價(元)的函數(shù)關(guān)系式.(2)要使這種蜜棗每日銷售的利潤最大,每袋的銷售價應定為多少元?每日銷售的最大利潤是多少元?25.(12分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數(shù)y=交于點C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點B為OF的中點,四邊形OECF的面積為16,點D的坐標為(4,﹣b).(1)求一次函數(shù)表達式和反比例函數(shù)表達式;(2)求出點C坐標,并根據(jù)圖象直接寫出不等式kx+b≤的解集.26.如圖所示,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標系.(1)求OE的長.(2)求經(jīng)過O,D,C三點的拋物線的解析式.(3)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當點P到達點B時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,DP=DQ.(4)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,直接寫出M點的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)鉛球出手高度是m,可得點(0,)在拋物線上,代入解析式得a=-,從而求得解析式,當y=0時解一元二次方程求得x的值即可;【題目詳解】解:∵鉛球出手高度是m,∴拋物線經(jīng)過點(0,),代入解析式得:=16a+3,解得a=-,故解析式為:令y=0,得:,解得:x1=-2(舍去),x2=10,
則鉛球推出的距離為10m.故選:B.【題目點撥】本題考查二次函數(shù)的實際應用,熟練掌握待定系數(shù)法求函數(shù)解析式是解題關(guān)鍵.2、C【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念逐一進行判斷即可得.【題目詳解】A、是軸對稱圖形,不是中心對稱圖形,故不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故不符合題意;C、是軸對稱圖形,也是中心對稱圖形,故符合題意;D、是軸對稱圖形,不是中心對稱圖形,故不符合題意,故選C.【題目點撥】本題主要考查軸對稱圖形和中心對稱圖形,在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),如果把一個圖形繞某個點旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.3、D【分析】根據(jù)二次函數(shù)的性質(zhì)解題.【題目詳解】解:A、由于y=x2-4x-3中的a=1>0,所以該拋物線的開口方向是向上,故本選項不符合題意.
B、由y=x2-4x-3=(x-2)2-7知,該函數(shù)圖象的頂點坐標是(2,-7),故本選項不符合題意.
C、由y=x2-4x-3=(x-2)2-7知,該拋物線的對稱軸是x=2且拋物線開口方向向上,所以當x>2時,y隨x的增大而增大,故本選項不符合題意.
D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,則該拋物線與x軸有兩個不同的交點,故本選項符合題意.
故選:D.【題目點撥】考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),需要利用二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象與x軸交點的求法,配方法的應用等解答,難度不大.4、A【分析】根據(jù)概率公式解答即可.【題目詳解】袋子里裝有2個紅球、3個黃球和5個白球共10個球,從中摸出一個球是白球的概率為:.故選A.【題目點撥】本題考查了隨機事件概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.5、C【分析】先根據(jù)拋物線y=ax2-2x過原點排除A,再由反比例函數(shù)圖象確定ab的符號,再由a、b的符號和拋物線對稱軸確定拋物線與直線y=bx+a的位置關(guān)系,進而得解.【題目詳解】∵當x=0時,y=ax2-2x=0,即拋物線y=ax2-2x經(jīng)過原點,故A錯誤;∵反比例函數(shù)y=的圖象在第一、三象限,∴ab>0,即a、b同號,當a<0時,拋物線y=ax2-2x的對稱軸x=<0,對稱軸在y軸左邊,故D錯誤;當a>0時,b>0,直線y=bx+a經(jīng)過第一、二、三象限,故B錯誤;C正確.故選C.【題目點撥】本題主要考查了一次函數(shù)、反比例函數(shù)、二次函數(shù)的圖象與性質(zhì),根據(jù)函數(shù)圖象與系數(shù)的關(guān)系進行判斷是解題的關(guān)鍵,同時考查了數(shù)形結(jié)合的思想.6、A【解題分析】試題分析:由于等腰三角形的兩腰相等,題目給出了腰和底,根據(jù)周長的定義即可求解:∵8+8+5=1.∴這個三角形的周長為1.故選A.考點:等腰三角形的性質(zhì).7、C【分析】根據(jù)函數(shù)圖象平移的法則“左加右減,上加下減”的原則進行解答即可.【題目詳解】由“左加右減”的原則可知,將拋物線先向右平移1個單位可得到拋物線;由“上加下減”的原則可知,將拋物線先向下平移2個單位可得到拋物線.
故選:C.【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.8、D【分析】根據(jù)幾何概型的意義,求出圓的面積,再求出正方形的面積,算出其比值即可.【題目詳解】解:設(shè)正方形的邊長為2a,則圓的半徑為a,則圓的面積為:,正方形的面積為:,∴針扎到陰影區(qū)域的概率是,故選:D.【題目點撥】本題考查幾何概型的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積和總面積的比,這個比即事件(A)發(fā)生的概率.9、D【分析】根據(jù)中位數(shù)的定義即位于中間位置或中間兩數(shù)的平均數(shù)可以得到去掉一個最高分和一個最低分不影響中位數(shù)進行分析即可.【題目詳解】解:去掉一個最高分和一個最低分對中位數(shù)沒有影響,故選:D.【題目點撥】本題考查統(tǒng)計量的選擇,解題的關(guān)鍵是了解中位數(shù)的定義,難度較?。?0、A【分析】設(shè)△OAB的邊長為2a,根據(jù)等邊三角形的性質(zhì),可得點B的坐標為(-a,a),代入反比例函數(shù)解析式可得出a的值,繼而得出△OAB的周長.【題目詳解】解:如圖,設(shè)△OAB的邊長為2a,過B點作BM⊥x軸于點M.
又∵△OAB是等邊三角形,
∴OM=OA=a,BM=a,
∴點B的坐標為(-a,a),
∵點B是反比例函數(shù)y=?圖象上的點,
∴-a?a=-8,
解得a=±2(負值舍去),
∴△OAB的周長為:3×2a=6a=12.
故選:A.【題目點撥】此題考查反比例函數(shù)圖象上點的坐標特征,等邊三角形的性質(zhì),設(shè)△OAB的邊長為2a,用含a的代數(shù)式表示出點B的坐標是解題的關(guān)鍵.11、A【分析】用樹形圖法確定所有情況和所需情況,然后用概率公式解答即可.【題目詳解】解:畫樹狀圖如下:則總共有12種情況,其中有6種情況是兩個球顏色相同的,故其概率為.故答案為A.【題目點撥】本題考查畫樹形圖和概率公式,其中根據(jù)題意畫出樹形圖是解答本題的關(guān)鍵.12、D【分析】根據(jù)隨機事件的定義,逐一判斷選項,即可得到答案.【題目詳解】∵任意一個五邊形的外角和等于540°,是必然事件,∴A不符合題意,∵通常情況下,將油滴入水中,油會浮在水面上,是必然事件,∴B不符合題意,∵隨意翻一本120頁的書,翻到的頁碼是150,是不等能事件,∴C不符合題意,∵經(jīng)過有交通信號燈的路口,遇到綠燈,是隨機事件,∴D符合題意,故選D.【題目點撥】本題主要考查隨機事件的定義,掌握必然事件,隨機事件,不可能事件的定義,是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】結(jié)合已知條件,作出輔助線,通過全等得出ME=GN,且隨著點F的移動,ME的長度不變,從而確定當點N與點D重合時,使線段DG最?。绢}目詳解】解:如圖所示,過點E做EM⊥AB交BA延長線于點M,過點G作GN⊥AD交AD于點N,∴∠EMF=∠GNE=90°∵四邊形ABCD是平行四邊形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG為EF逆時針旋轉(zhuǎn)120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF與△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴當點N與點D重合時,使線段DG最小,如圖所示,此時,故答案為:.【題目點撥】本題考查了平行四邊形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的構(gòu)造、幾何中的動點問題,解題的關(guān)鍵是作出輔助線,得到全等三角形,并發(fā)現(xiàn)當點N與點D重合時,使線段DG最小.14、1【分析】先判斷出DE是△ABC的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得AB=2DE,問題得解.【題目詳解】∵點D,E分別是AC,BC的中點,∴DE是△ABC的中位線,∴AB=2DE=2×50=1米.故答案為1.【題目點撥】本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,熟記定理并準確識圖是解題的關(guān)鍵.15、320【分析】先求出右側(cè)留言部分的長,再根據(jù)矩形的面積公式得出面積與x的函數(shù)解析式,利用二次函數(shù)的圖像與性質(zhì)判斷即可得出答案.【題目詳解】根據(jù)題意可得,右側(cè)留言部分的長為(36-x)cm∴右側(cè)留言部分的面積又14≤x≤16∴當x=16時,面積最大(故答案為320.【題目點撥】本題考查的是二次函數(shù)的實際應用,比較簡單,解題關(guān)鍵是根據(jù)題意寫出面積的函數(shù)表達式.16、x(2x+3)(2x﹣3)【分析】先提取公因式x,再利用平方差公式分解因式即可.【題目詳解】原式=x(4x2﹣9)=x(2x+3)(2x﹣3),故答案為:x(2x+3)(2x﹣3)【題目點撥】本題考查了提公因式法與公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.17、6米.【解題分析】試題分析:在Rt△ABC中,已知坡面AB的坡比以及鉛直高度BC的值,通過解直角三角形即可求出斜面AB的長.試題解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考點:解直角三角形的應用.18、0<x<1.【解題分析】首先將兩函數(shù)解析式聯(lián)立得出其交點橫坐標,進而得出當y1<y2時x的取值范圍.【題目詳解】解:由題意可得:x2+c=x+c,解得:x1=0,x2=1,則當y1<y2時x的取值范圍:0<x<1.故答案為0<x<1.【題目點撥】此題主要考查了二次函數(shù)與一次函數(shù),正確得出兩函數(shù)的交點橫坐標是解題關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)1或-1【分析】(1)根據(jù)因式分解法求出方程的兩個解,再證明這兩個解不相等即可;(2)根據(jù)(1)中的兩個解分類討論即可.【題目詳解】(1)證明:原方程可化為或,∵∴無論為何值,該方程都有兩個不相等的實數(shù)根.(2)當時,解得:m=1,即方程的另一個根為1;當m=-1時,則另一個根為,∴另一個根為1或-1故答案為:1或-1.【題目點撥】此題考查的是解一元二次方程和根據(jù)一元二次方程的一個根求另一個根,掌握因式分解法解一元二次方程和分類討論的數(shù)學思想是解決此題的關(guān)鍵.20、(1)y=x2﹣2x﹣3,點A、B的坐標分別為:(﹣1,0)、(3,0);(2)存在,點P(1+,﹣);(3)故S有最大值為,此時點P(,﹣).【分析】(1)根據(jù)題意得到函數(shù)的對稱軸為:x=﹣=1,解出b=﹣2,即可求解;(2)四邊形POP′C為菱形,則yP=﹣OC=﹣,即可求解;(3)過點P作PH∥y軸交BC于點P,由點B、C的坐標得到直線BC的表達式,設(shè)點P(x,x2﹣2x﹣3),則點H(x,x﹣3),再根據(jù)ABPC的面積S=S△ABC+S△BCP即可求解.【題目詳解】(1)函數(shù)的對稱軸為:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再將點C(0,﹣3)代入得到c=-3,,∴拋物線的表達式為:y=x2﹣2x﹣3,令y=0,則x=﹣1或3,故點A、B的坐標分別為:(﹣1,0)、(3,0);(2)存在,理由:如圖1,四邊形POP′C為菱形,則yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去負值),故點P(1+,﹣);(3)過點P作PH∥y軸交BC于點P,由點B、C的坐標得到直線BC的表達式為:y=x﹣3,設(shè)點P(x,x2﹣2x﹣3),則點H(x,x﹣3),ABPC的面積S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴當x=時,S有最大值為,此時點P(,﹣).【題目點撥】此題是一道二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,圖象與坐標軸的交點,翻折的性質(zhì),菱形的性質(zhì),利用函數(shù)解析式確定最大值,(3)是此題的難點,利用分割法求四邊形的面積是解題的關(guān)鍵.21、.【分析】將特殊角的三角函數(shù)值代入求解.【題目詳解】原式=×+4×,=+2,=.【題目點撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值.22、(1)4;(2)y=2x+π-4(0<x≤2+4)【分析】(1)根據(jù)圓周角定理得到△AOB是等邊三角形,求出⊙O的半徑;
(2)過點O作OH⊥AB,垂足為H,先求出AH=BH=AB=2,再利用勾股定理得出OH的值,進而求解.【題目詳解】(1)解:(1)∵∠APB=30°,
∴∠AOB=60°,又OA=OB,
∴△AOB是等邊三角形,
∴⊙O的半徑是4;(2)解:過點O作OH⊥AB,垂足為H則∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH==2∴y=×16π-×4×2+×4×x=2x+π-4(0<x≤2+4).【題目點撥】本題考查了圓周角定理,勾股定理、掌握一條弧所對的圓周角是這條弧所對的圓心角的一半是解題的關(guān)鍵.23、(1)m≥﹣34;(2)m的值為2【解題分析】(1)根據(jù)方程有兩個相等的實數(shù)根可知△>1,求出m的取值范圍即可;(2)根據(jù)根與系數(shù)的關(guān)系得出α+β與αβ的值,代入代數(shù)式進行計算即可.【題目詳解】(1)由題意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣34(2)由根與系數(shù)的關(guān)系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣34所以m1=﹣1應舍去,m的值為2.【題目點撥】本題考查的是根與系數(shù)的關(guān)系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,x1+x2=﹣ba,x1x2=c24、(1);(2)要使這種蜜棗每日銷售的利潤最大,每袋的銷售價應定為25元,每日銷售的最大利潤是225元.【分析】(1)根據(jù)表格中的數(shù)據(jù),利用待定系數(shù)法,求出日銷售量y(袋)與銷售價x(元)的函數(shù)關(guān)系式即可(2)利用每件利潤×總銷量=總利潤,進而求出二次函數(shù)最值即可.【題目詳解】(1)依題意,根據(jù)表格的數(shù)據(jù),設(shè)日銷售量y(袋)與銷售價x(元)的函數(shù)關(guān)系式為y=kx+b得,解得故日銷售量y(袋)與銷售價x(元)的函數(shù)關(guān)系式為:y=?x+40(2)設(shè)利潤為元,得∵∴當時,取得最大值,最大值為225故要使這種蜜棗每日銷售的利潤最大,每袋的銷售價應定為25元,每日銷售的最大利潤是225元.【題目點撥】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應用,根據(jù)每天的利潤=一件的利潤×銷售件數(shù),建立函數(shù)關(guān)系式,此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.25、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面積求得m=﹣16,得到反比例函數(shù)的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函數(shù)的解析式;(2)由一次函數(shù)的解析式求得B的坐標為(0,1),根據(jù)題意OF=8,C點的縱坐標為8,代入反比例函數(shù)的解析式求得橫坐標,得到C的坐標,根據(jù)C、D的坐標結(jié)合圖象即可求得不等式kx+b≤的解集.【題目詳解】解:(1)∵CE⊥x軸,CF⊥y軸,∵四邊形OECF的面積為16,∴|m|=16,∵雙曲線位于二、四象限,∴m=﹣16,∴反比例函數(shù)表達式為y=,將x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1將D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函數(shù)的表達式為y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,將y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集為﹣2≤x<0或x≥1.【題目點撥】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,用到的知識點是待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,這里體現(xiàn)了數(shù)形結(jié)合的思想,關(guān)鍵是根據(jù)反比例函數(shù)與一次函數(shù)的交點求出不等式的解集.26、(1)3;(2);(3)t=;(1)存在,M點的坐標為(2,16)或(-6,16)或【分析】(1)由矩形的性質(zhì)以及折疊的性質(zhì)可求得CE、CO的長,在Rt△COE中,由勾股定理可求得OE的長;
(2)設(shè)AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,從而得出D點坐標,結(jié)合C、O兩點,利用待定系數(shù)法可求得拋物線解析式;
(3)用含t的式子表示出BP、EQ的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)業(yè)保險代理與服務(wù)合同
- 2025年度高端制造裝備研發(fā)股權(quán)投資及市場拓展合同
- 二零二五年度南昌商品房買賣合同2025版標準文本
- 2025年度個人門面出租合同附贈增值服務(wù)范本3篇
- 2025年度鋼材運輸服務(wù)合同模板
- 二零二五年度跨境電商進口生鮮食品采購合同范本4篇
- 華為認證智能協(xié)作中級 HCIP-Collaboration H11-861考試題庫及答案
- 2025年度汽車租賃車輛租賃價格調(diào)整合同6篇
- 2025年度模具行業(yè)學徒培養(yǎng)用工合同示范4篇
- 2025年度南匯工商行政管理志編纂服務(wù)合同4篇
- 農(nóng)村自建房安全合同協(xié)議書
- 《教科版》二年級科學下冊全冊課件(完整版)
- 杜仲葉藥理作用及臨床應用研究進展
- 4S店售后服務(wù)6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
- 高速公路相關(guān)知識講座
- 兒科關(guān)于抗生素使用的PDCA
- 小學生必備古詩
- 手術(shù)室護理實踐指南2023年
評論
0/150
提交評論