2023-2024學(xué)年廣東高明一中高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2023-2024學(xué)年廣東高明一中高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2023-2024學(xué)年廣東高明一中高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2023-2024學(xué)年廣東高明一中高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2023-2024學(xué)年廣東高明一中高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年廣東高明一中高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.2.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.3.已知命題,,若是一個充分不必要條件,則的取值范圍是()A. B.C. D.4.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn)(1,2),為銳角,且,則()A.-18 B.-6C. D.5.已知向量,則()A. B.C. D.6.若實(shí)數(shù)滿足,則點(diǎn)不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.拋物線的準(zhǔn)線方程是A.x=1 B.x=-1C. D.8.已知,,,,則()A. B.C. D.9.在空間直角坐標(biāo)系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.10.下列關(guān)于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點(diǎn)D.函數(shù)圖象的對稱軸方程為11.從集合{2,3,4,5}中隨機(jī)抽取一個數(shù)m,從集合{1,3,5}中隨機(jī)抽取一個數(shù)n,則向量=(m,n)與向量=(1,-1)垂直的概率為()A. B.C. D.12.若直線:與:互相平行,則a的值是()A. B.2C.或2 D.3或二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M的準(zhǔn)線為l且與x軸相交于點(diǎn)B,A為M上的一點(diǎn),直線AO與直線l相交于C點(diǎn),若,,則M的標(biāo)準(zhǔn)方程為______________.14.如圖,已知與所在平面垂直,且,,,點(diǎn)P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______15.已知點(diǎn)P是橢圓上的一點(diǎn),點(diǎn),則的最小值為____________.16.已知命題:方程表示焦點(diǎn)在軸上的橢圓;命題:方程表示雙曲線.若為真,則實(shí)數(shù)的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數(shù),.(1)若,求函數(shù)的最小值;(2)若,解關(guān)于x的不等式.18.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.19.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點(diǎn),且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設(shè)P是直線3x+4y+8=0上的動點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.20.(12分)自2021年秋季起,江西省普通高中起始年級全面實(shí)施新課程改革,為了迎接新高考,某校舉行物理和化學(xué)等選科考試,其中600名學(xué)生化學(xué)成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構(gòu)成等差數(shù)列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數(shù);(3)估計(jì)這600名學(xué)生化學(xué)成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)和中位數(shù)(中位數(shù)精確到0.1)21.(12分)已知圓C的圓心在x軸上,且經(jīng)過點(diǎn),.(1)求圓C的標(biāo)準(zhǔn)方程;(2)過斜率為的直線與圓C相交于M,N,兩點(diǎn),求弦MN的長.22.(10分)已知O為坐標(biāo)原點(diǎn),雙曲線C:(,)的離心率為,點(diǎn)P在雙曲線C上,點(diǎn),分別為雙曲線C的左右焦點(diǎn),.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)已知點(diǎn),,設(shè)直線PA,PB的斜率分別為,.證明:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】構(gòu)造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A2、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.3、A【解析】先化簡命題p,q,再根據(jù)是的一個充分不必要條件,由q求解.【詳解】因?yàn)槊},或,又是的一個充分不必要條件,所以,解得,所以的取值范圍是,故選:A4、A【解析】由終邊上的點(diǎn)可得,由同角三角函數(shù)的平方、商數(shù)關(guān)系有,再應(yīng)用差角、倍角正切公式即可求.【詳解】由題設(shè),,,則,又,,所以.故選:A5、B【解析】根據(jù)向量加減法運(yùn)算的坐標(biāo)表示即可得到結(jié)果【詳解】故選:B.6、B【解析】作出給定的不等式組表示的平面區(qū)域,觀察圖形即可得解.【詳解】因?qū)崝?shù)滿足,作出不等式組表示的平面區(qū)域,如圖中陰影部分,觀察圖形知,陰影區(qū)域不過第二象限,即點(diǎn)不可能落在第二象限.故選:B7、C【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而求得p,再根據(jù)拋物線性質(zhì)得出準(zhǔn)線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準(zhǔn)線方程是y=﹣故答案為C【點(diǎn)睛】本題主要考查拋物線的標(biāo)準(zhǔn)方程和簡單性質(zhì).屬基礎(chǔ)題8、D【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】因?yàn)椋?,故,又,在上的增函?shù),故,故,故選:D.9、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計(jì)算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A10、D【解析】化簡,利用正弦型函數(shù)的性質(zhì),依次判斷,即可【詳解】∵∴,A選項(xiàng)錯誤;的最小正周期為,B選項(xiàng)錯誤;令,則,故函數(shù)圖象的對稱中心為點(diǎn),C選項(xiàng)錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項(xiàng)正確故選:D11、A【解析】根據(jù)分步計(jì)數(shù)乘法原理求得所有的)共有12個,滿足兩個向量垂直的共有2個,利用古典概型公式可得結(jié)果.【詳解】集合{2,3,4,5}中隨機(jī)抽取一個數(shù),有4種方法;從集合{1,3,5}中隨機(jī)抽取一個數(shù),有3種方法,所以,所有的共有個,由向量與向量垂直,可得,即,故滿足向量與向量垂直的共有2個:,所以向量與向量垂直的概率為,故選A.【點(diǎn)睛】本題主要考查分步計(jì)數(shù)乘法原理的應(yīng)用、向量垂直的性質(zhì)以及古典概型概率公式的應(yīng)用,屬于中檔題.在解古典概型概率題時(shí),首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率.12、A【解析】根據(jù)直線:與:互相平行,由求解.【詳解】因?yàn)橹本€:與:互相平行,所以,即,解得或,當(dāng)時(shí),直線:,:,互相平行;當(dāng)時(shí),直線:,:,重合;所以,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用相似關(guān)系計(jì)算,求得直線OA的方程,再聯(lián)立方程求得,利用拋物線定義根據(jù)即得p值,即得結(jié)果.【詳解】因?yàn)椋?,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯(lián)立直線OA與拋物線方程,解得,所以,故,則拋物線標(biāo)準(zhǔn)方程為.故答案為:.14、##【解析】取的中點(diǎn),的中點(diǎn),以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點(diǎn),的中點(diǎn),如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個法向量,因?yàn)?,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:15、【解析】設(shè),表示出,消去y,利用二次函數(shù)求最值即可.【詳解】設(shè),則.所以當(dāng)x=1時(shí),最小.故答案為:.16、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據(jù)橢圓和雙曲線的定義即可解出?!驹斀狻俊邽檎?,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時(shí),不等式的解集為當(dāng)時(shí),不等式的解集為當(dāng)時(shí),不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項(xiàng)整理為,再對a分類討論,比較兩根的大小,即可求得解集.【小問1詳解】當(dāng)a=3時(shí),函數(shù)可整理為,因?yàn)?,所以利用基本不等式,?dāng)且僅當(dāng),即時(shí),y取到最小值.所以,當(dāng)時(shí),函數(shù)的最小值為.【小問2詳解】將不等式整理為,令,即,解得兩根為與1,因?yàn)椋?dāng)時(shí),即時(shí),此時(shí)的解集為;當(dāng)時(shí),即時(shí),此時(shí)的解集為;當(dāng)時(shí),即時(shí),此時(shí)的解集為.綜上所述,當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.18、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識,考查空間想象能力、分析問題的能力、計(jì)算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點(diǎn)M(M∈平面PAB),點(diǎn)M即為所求的一個點(diǎn).理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點(diǎn)A作AH⊥CE,交CE的延長線于點(diǎn)H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點(diǎn),以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點(diǎn):線線平行、線面平行、向量法.19、(1);(2).【解析】(1)設(shè)圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據(jù)點(diǎn)到直線的距離公式可求得答案.【詳解】解:(1)設(shè)圓方程為:,根據(jù)題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點(diǎn)到直線的距離所以,四邊形面積的最小值為.20、(1)(2)90(3)平均值69.5;中位數(shù)69.4【解析】(1)由各矩形面積和為1列式即可;(2)由高分頻率乘以600即可;(3)由平均數(shù)與中位數(shù)的估算方法列式即可.【小問1詳解】由題意可知:解得小問2詳解】高分的頻率約為:故高分人數(shù)為:【小問3詳解】平均值為,設(shè)中位數(shù)為x,則故中位數(shù)為69.421、(1)(2)【解析】(1)由圓的性質(zhì)可得圓心在線段的垂直平分線上,由題意求出的垂直平分線方程,從而得出圓心坐標(biāo),再求出半徑,得到答案.(2)由題意先求出滿足條件的直線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論