版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省鶴壁市浚縣第二高級中學2023年高二上數(shù)學期末學業(yè)質量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器內(nèi)注水,當球面恰好接觸水面時測得水深為6cm,如果不計容器的厚度,則球的體積為A. B.C. D.2.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或3.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.4.知點分別為圓上的動.點,為軸上一點,則的最小值()A. B.C. D.5.有一組樣本數(shù)據(jù)、、、,由這組數(shù)據(jù)得到新樣本數(shù)據(jù)、、、,其中,為非零常數(shù),則()A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同 B.兩組樣本數(shù)據(jù)的樣本標準差相同C.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同 D.兩組樣本數(shù)據(jù)的樣本眾數(shù)相同6.已知雙曲線的左、右焦點分別為,點A在雙曲線上,且軸,若則雙曲線的離心率等于()A. B.C.2 D.37.下列關于命題的說法錯誤的是A.命題“若,則”的逆否命題為“若,則”B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件C.命題“,使得”的否定是“,均有”D.“若為的極值點,則”的逆命題為真命題8.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.9.在數(shù)列中,,則此數(shù)列最大項的值是()A.102 B.C. D.10810.已知橢圓的兩個焦點分別為,且平行于軸的直線與橢圓交于兩點,那么的值為()A. B.C. D.11.已知空間向量,則()A. B.C. D.12.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質,如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且,若點在直線上,則______;______.14.雙曲線的離心率為__________15.與雙曲線有共同的漸近線,并且經(jīng)過點的雙曲線方程是______16.寫出一個漸近線的傾斜角為且焦點在y軸上的雙曲線標準方程___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調(diào)遞減,求a的取值范圍18.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值19.(12分)紅鈴蟲是棉花的主要害蟲之一,也侵害木棉、錦葵等植物.為了防治蟲害,從根源上抑制害蟲數(shù)量.現(xiàn)研究紅鈴蟲的產(chǎn)卵數(shù)和溫度的關系,收集到7組溫度和產(chǎn)卵數(shù)的觀測數(shù)據(jù)于表Ⅰ中.根據(jù)繪制的散點圖決定從回歸模型①與回歸模型②中選擇一個來進行擬合表Ⅰ溫度x/℃20222527293135產(chǎn)卵數(shù)y/個711212465114325(1)請借助表Ⅱ中的數(shù)據(jù),求出回歸模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)類似的,可以得到回歸模型②的方程為,試求兩種模型下溫度為時的殘差;(3)若求得回歸模型①的相關指數(shù),回歸模型②的相關指數(shù),請結合(2)說明哪個模型的擬合效果更好參考數(shù)據(jù):.附:回歸方程中,相關指數(shù).20.(12分)在平面直角坐標系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.21.(12分)已知數(shù)列的前項和為,,.(1)求的通項公式;(2)求數(shù)列的前項和;(3)若數(shù)列,,求前項和.22.(10分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關系,即可求出球的半徑,從而得到球的體積【詳解】設球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點睛】本題主要考查球的體積公式的應用,以及球的結構特征的應用,屬于基礎題2、C【解析】點關于軸的對稱點為,由反射光線的性質,可設反射光線所在直線的方程為:,再利用直線與圓相切,可知圓心到直線的距離等于半徑,由此即可求出結果【詳解】點關于軸的對稱點為,設反射光線所在直線的方程為:,化為因為反射光線與圓相切,所以圓心到直線的距離,可得,所以或故選:C3、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.4、B【解析】求出圓關于軸的對稱圓的圓心坐標,以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關于軸的對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,半徑為1,∴若與關于x軸對稱,則,即,當三點不共線時,當三點共線時,所以同理(當且僅當時取得等號)所以當三點共線時,當三點不共線時,所以∴的最小值為圓與圓的圓心距減去兩個圓的半徑和,∴.故選:B.5、B【解析】利用平均數(shù)公式可判斷A選項;利用標準差公式可判斷B選項;利用中位數(shù)的定義可判斷C選項;利用眾數(shù)的定義可判斷D選項.【詳解】對于A選項,設數(shù)據(jù)、、、的平均數(shù)為,數(shù)據(jù)、、、的平均數(shù)為,則,A錯;對于B選項,設數(shù)據(jù)、、、的標準差為,數(shù)據(jù)、、、的標準差為,,B對;對于C選項,設數(shù)據(jù)、、、中位數(shù)為,數(shù)據(jù)、、、的中位數(shù)為,不妨設,則,若為奇數(shù),則,;若為偶數(shù),則,.綜上,,C錯;對于D選項,設數(shù)據(jù)、、、的眾數(shù)為,則數(shù)據(jù)、、、的眾數(shù)為,D錯.故選:B.6、B【解析】由雙曲線定義結合通徑公式、化簡得出,最后得出離心率.【詳解】,,,解得故選:B7、D【解析】根據(jù)命題及其關系、充分條件與必要條件、導數(shù)在函數(shù)中應用、全稱量詞與存在量詞等相關知識一一判斷可得答案.【詳解】解:A,由原命題與逆否命題的構成關系,可知A正確;B,當a=2>1時,函數(shù)在定義域內(nèi)是單調(diào)遞增函數(shù),當函數(shù)定義域內(nèi)是單調(diào)遞增函數(shù)時,a>1.所以B正確;C,由于存在性命題的否定是全稱命題,所以",使得"的否定是",均有,所以C正確;D,的根不一定是極值點,例如:函數(shù),則=0,即x=0就不是極值點,所以“若為的極值點,則”的逆命題為假命題,故選D.【點睛】本題主要考查命題及其關系、充分條件與必要條件、導數(shù)在函數(shù)中應用、全稱量詞與存在量詞等相關知識,需牢記并靈活運用相關知識.8、B【解析】求出,進而求出,之間的關系,即可求解結論【詳解】解:由題意,直線方程為:,其中,因此,設,,,,解得,得,,弦的長恰等于實軸的長,,,故選:B9、D【解析】將將看作一個二次函數(shù),利用二次函數(shù)的性質求解.【詳解】將看作一個二次函數(shù),其對稱軸為,開口向下,因為,所以當時,取得最大值,故選:D10、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A11、A【解析】求得,即可得出.【詳解】,,,.故選:A.12、A【解析】設出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、①.;②.【解析】根據(jù)等差數(shù)列的定義,結合等差數(shù)列前項和公式、裂項相消法進行求解即可.【詳解】因為點在直線上,所以,所以數(shù)列是以,公差為的等差數(shù)列,所以;因為,所以,于是,故答案為:;14、【解析】∵雙曲線的方程為∴,∴∴故答案為15、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據(jù)已知條件求出即可.16、(答案不唯一)【解析】根據(jù)已知條件寫出一個符合條件的方程即可.【詳解】如,焦點在y軸上,令,得漸近線方程為,其中的傾斜角為.故答案為:(答案不唯一).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)對求導,再根據(jù)題意有,據(jù)此列式求出;(2)由題可知對恒成立,即對恒成立,因此求出在區(qū)間上的最小值即可得出結論.【詳解】(1),則,因為在處取得極值,所以,解得,經(jīng)檢驗,當時,在處取得極值;(2)因為在上單調(diào)遞減,所以對恒成立,則對恒成立,∵當時,,∴,即a的取值范圍為.【點睛】本題主要考查利用函數(shù)的單調(diào)性與極值求參,需要學生對相關基礎知識牢固掌握且靈活運用.18、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質易得、,再根據(jù)線面垂直的判定及性質證明結論;(2)構建空間直角坐標系,確定相關點坐標,進而求的方向向量、面的法向量,應用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,.∴,,,,設為面的法向量,則,令得,設與平面所成角為,則,∴直線與平面所成角的正弦值為.19、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用兩邊取自然對數(shù),利用表中的數(shù)據(jù)即可求解;(2)分別計算模型①、②在時殘差;(3)根據(jù)相關指數(shù)的大小判斷摸型①、②的殘差平方和,再得出那個模型的擬合效果更好.【小問1詳解】由,得,令,得,由表Ⅱ數(shù)據(jù)可得,,,所以,所以回歸方程為(或).【小問2詳解】由題意可知,模型①在時殘差為,模型②在時殘差為.【小問3詳解】因為,即模型①的相關指數(shù)大于模型②的相關指數(shù),由相關指數(shù)公式知,模型①的殘差平方和小于模型②的殘差平方和,因此模型①得到的數(shù)據(jù)更接近真實數(shù)據(jù),所以模型①的擬合效果更好.20、(1)(2)【解析】(1)設點坐標為,根據(jù)兩直線的斜率之積為得到方程,整理即可;(2)設,,,根據(jù)設、在橢圓上,則,再由,則,即可表示出直線、的方程,聯(lián)立兩直線方程,即可得到點的縱坐標,再根據(jù)弦長公式得到,令,則,最后利用基本不等式計算可得;【小問1詳解】解:設點坐標為,定點,,直線與直線的斜率之積為,,【小問2詳解】解:設,,,則,,所以又,所以,又即,則直線:,直線:,由,解得,即,所以令,則,所以因為,當且僅當即時取等號,所以的最大值為;21、(1)(2)(3)【解析】(1)由可求得的值,令,由可得,兩式作差可推導出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,即可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得;(3)利用奇偶分組法,結合等差數(shù)列和等比數(shù)列的求和公式可求得.【小問1詳解】解:當時,,可得,當時,由可得,上述兩個等式作差得,可得,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,故.【小問2詳解】解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版環(huán)保設備代理銷售合同規(guī)范3篇
- 二零二五臨時科研人員聘用合同4篇
- 二零二五版地下綜合管廊建設項目承包施工合同2篇
- 二零二五年度茅臺酒銷售數(shù)據(jù)統(tǒng)計分析及市場調(diào)研合同4篇
- 二零二五年度林木種植與生態(tài)環(huán)境保護合同4篇
- 2025版馬戲團特色節(jié)目創(chuàng)意開發(fā)與版權授權合同4篇
- 二零二五年度黃沙石子與高性能混凝土生產(chǎn)合同3篇
- 2025年手機生產(chǎn)設備采購與驗收合同模板3篇
- 二零二五年度餐廳與外賣平臺合作合同3篇
- 二零二五年度環(huán)保型煤炭銷售合同標準范本4篇
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 瀝青路面施工安全培訓
- 機電設備安裝施工及驗收規(guī)范
- 倉庫安全培訓考試題及答案
- 中國大百科全書(第二版全32冊)08
- 初中古詩文言文背誦內(nèi)容
- 天然氣分子篩脫水裝置吸附計算書
- 檔案管理項目 投標方案(技術方案)
- 蘇教版六年級上冊100道口算題(全冊完整版)
- 2024年大學試題(宗教學)-佛教文化筆試考試歷年典型考題及考點含含答案
- 計算機輔助設計智慧樹知到期末考試答案章節(jié)答案2024年青島城市學院
評論
0/150
提交評論