上海市松江區(qū) 2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
上海市松江區(qū) 2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
上海市松江區(qū) 2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
上海市松江區(qū) 2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
上海市松江區(qū) 2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市松江區(qū)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.記不超過(guò)x的最大整數(shù)為,如,.已知數(shù)列的通項(xiàng)公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.162.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為()A. B.C. D.3.已知,則()A. B.C. D.4.2021年小林大學(xué)畢業(yè)后,9月1日開(kāi)始工作,他決定給自己開(kāi)一張儲(chǔ)蓄銀行卡,每月的10號(hào)存錢至該銀行卡(假設(shè)當(dāng)天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個(gè)月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達(dá)到1萬(wàn)元的時(shí)間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日5.已知數(shù)列中,其前項(xiàng)和為,且滿足,數(shù)列的前項(xiàng)和為,若對(duì)恒成立,則實(shí)數(shù)的值可以是()A. B.2C.3 D.6.直線平分圓的周長(zhǎng),過(guò)點(diǎn)作圓的一條切線,切點(diǎn)為,則()A.5 B.C.3 D.7.過(guò)點(diǎn)的直線在兩坐標(biāo)軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或8.在中,角,,所對(duì)的邊分別為,,,若,,,則A. B.2C.3 D.9.已知集合,則()A. B.C. D.10.在等差數(shù)列中,,,則公差A(yù).1 B.2C.3 D.411.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.12.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在區(qū)間上隨機(jī)取1個(gè)數(shù),則取到的數(shù)小于2的概率為_(kāi)__________.14.在中,,,,則__________.15.已知雙曲線的左焦點(diǎn)為F,點(diǎn)P在雙曲線右支上,若線段PF的中點(diǎn)在以原點(diǎn)O為圓心,為半徑的圓上,且直線PF的斜率為,則該雙曲線的離心率是______16.如圖,長(zhǎng)方體中,,,,,分別是,,的中點(diǎn),則異面直線與所成角為_(kāi)_.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),且(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)在區(qū)間上的最小值18.(12分)已知,是函數(shù)的兩個(gè)極值點(diǎn).(1)求的解析式;(2)記,,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.19.(12分)已知公差不為零的等差數(shù)列的前項(xiàng)和為,,,成等比數(shù)列且滿足________.請(qǐng)?jiān)冖?;②;③,這三個(gè)條件中任選一個(gè)補(bǔ)充在上面題干中,并回答以下問(wèn)題.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,鼓勵(lì)全民閱讀經(jīng)典書(shū)籍,某市舉行閱讀月活動(dòng),現(xiàn)統(tǒng)計(jì)某街道約10000人在該活動(dòng)月每人每日平均閱讀時(shí)間(分鐘)的頻率分布直方圖如圖:(1)求x的值;(2)從該街道任選1人,則估計(jì)這個(gè)人的每日平均閱讀時(shí)間超過(guò)60分鐘的概率.21.(12分)已知函數(shù)的圖像在(為自然對(duì)數(shù)的底數(shù))處取得極值.(1)求實(shí)數(shù)的值;(2)若不等式在恒成立,求的取值范圍.22.(10分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點(diǎn)M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時(shí),,使的正整數(shù)n的最大值為,故選:C2、A【解析】由函數(shù)單調(diào)性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負(fù),,可化為:或,解得或故選:A3、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則求導(dǎo)函數(shù)即可.【詳解】.故選:B.4、C【解析】分析可得每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為,分析首次達(dá)到1萬(wàn)元的值,即得解【詳解】依題意可知,小林從第一個(gè)月開(kāi)始,每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為.因?yàn)闉樵龊瘮?shù),且,所以第14個(gè)月的10號(hào)存完錢后,他這張銀行卡賬上存錢總額首次達(dá)到1萬(wàn)元,即2022年10月11日他這張銀行卡賬上存錢總額首次達(dá)到1萬(wàn)元.故選:C5、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進(jìn)行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因?yàn)閷?duì)恒成立,當(dāng)時(shí),則恒成立,當(dāng)時(shí),,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對(duì)恒成立,必須滿足.故選:D6、B【解析】根據(jù)圓的性質(zhì),結(jié)合圓的切線的性質(zhì)進(jìn)行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因?yàn)橹本€平分圓的周長(zhǎng),所以圓心在直線上,故,因此,,所以有,所以,故選:B7、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當(dāng)直線過(guò)原點(diǎn)時(shí),滿足題意,方程為,即2x-y=0;當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)方程為,∵直線過(guò)(1,2),∴,∴,∴方程為,故選:D﹒8、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點(diǎn)睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計(jì)算能力,屬于基礎(chǔ)題9、B【解析】先求得集合A,再根據(jù)集合的交集運(yùn)算可得選項(xiàng).【詳解】解:因?yàn)?,所以故選:B.10、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.11、C【解析】取中點(diǎn),連接,,證明平面,從而可得為與平面所成角,再利用三角函數(shù)計(jì)算的正弦值.【詳解】取中點(diǎn),連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C12、D【解析】以為坐標(biāo)原點(diǎn),向量,,方向分別為、、軸建立空間直角坐標(biāo)系,利用空間向量夾角公式進(jìn)行求解即可.【詳解】以為坐標(biāo)原點(diǎn),向量,,方向分別為、、軸建立空間直角坐標(biāo)系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)幾何概型計(jì)算公式進(jìn)行求解即可.【詳解】設(shè)“區(qū)間上隨機(jī)取1個(gè)數(shù)”,對(duì)應(yīng)集合為,區(qū)間長(zhǎng)度為3,“取到的數(shù)小于2”,對(duì)應(yīng)集合為,區(qū)間長(zhǎng)度為1,所以.故答案為:14、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因?yàn)樵谥?,,,,所以由余弦定理可得,所以,即,則故答案為:15、3【解析】如圖利用條件可得,,然后利用雙曲線的定義可得,即求.【詳解】如圖設(shè)雙曲線的右焦點(diǎn)為,線段PF的中點(diǎn)為M,連接,則,又直線PF的斜率為,∴在直角三角形中,,∴,∴,即,∴.故答案:3.16、【解析】以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,0,,,0,,,2,,,1,,,,設(shè)異面直線與所成角為,,異面直線與所成角為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由題意,求出的值,然后根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,判斷函數(shù)在區(qū)間上的單調(diào)性,從而即可求解.【小問(wèn)1詳解】解:由題意,,因?yàn)椋?,解得,所以,,因?yàn)?,,所以曲線在點(diǎn)處的切線方程為,即;【小問(wèn)2詳解】解:因?yàn)?,,所以時(shí),,時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即函數(shù)在區(qū)間上的最小值為.18、(1);(2)【解析】(1)根據(jù)極值點(diǎn)的定義,可知方程的兩個(gè)解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個(gè)交點(diǎn),進(jìn)而求解的取值范圍【詳解】解:(1)因?yàn)椋愿鶕?jù)極值點(diǎn)定義,方程的兩個(gè)根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個(gè)實(shí)數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個(gè)交點(diǎn),又因?yàn)椋瑒t令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因?yàn)?,,,,函?shù)圖象如下所示:若使函數(shù)與直線有三個(gè)交點(diǎn),則需使,即19、(1)答案見(jiàn)解析(2)【解析】(1)首先由,,成等比數(shù)列,求出,再由①或②或③求出數(shù)列的首項(xiàng)和公差,即可求得的通項(xiàng)公式;(2)求得的通項(xiàng)公式,結(jié)合裂項(xiàng)相消法求得.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,由,,成等比數(shù)列,可得,即,∵,故,選①:由,可得,解得,所以數(shù)列的通項(xiàng)公式為選②:由,可得,即,所以,解得,所以;選③:由,可得,即,所以,解得,所以;【小問(wèn)2詳解】由(1)可得,所以.20、(1)(2)0.7【解析】(1)利用概率和為1計(jì)算可得的值;(2)求頻率分布直方圖中每人每日平均閱讀時(shí)間超過(guò)60分鐘的概率即為這個(gè)人閱讀時(shí)間超過(guò)60分鐘的概率.【小問(wèn)1詳解】由得【小問(wèn)2詳解】,估計(jì)這個(gè)人的每日平均閱讀時(shí)間超過(guò)60分鐘的概率為21、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過(guò)構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)求得的取值范圍.【小問(wèn)1詳解】因?yàn)?,所以,因?yàn)楹瘮?shù)的圖像在點(diǎn)處取得極值,所以,,經(jīng)檢驗(yàn),符合題意,所以;【小問(wèn)2詳解】由(1)知,,所以在恒成立,即對(duì)任意恒成立.令,則.設(shè),易得是增函數(shù),所以,所以,所以函數(shù)在上為增函數(shù),則,所以.22、(1)證明見(jiàn)解析(2)【解析】(1)連接BD交AC于點(diǎn)E,連接ME,由所給條件推理出CA⊥AD,進(jìn)而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,再利用向量法求解二面角即可【小問(wèn)1詳解】(1)連接BD交AC于點(diǎn)E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論